aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/gpu/ir_emitter.cc
blob: 57a3f713e35b506ad9d5caab1ced2c7b74f8efcf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/gpu/ir_emitter.h"

#include <string>
#include <unordered_map>

#include "tensorflow/core/platform/logging.h"
// IWYU pragma: no_include "llvm/IR/Intrinsics.gen.inc"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "tensorflow/compiler/xla/primitive_util.h"
#include "tensorflow/compiler/xla/service/elemental_ir_emitter.h"
#include "tensorflow/compiler/xla/service/gpu/elemental_ir_emitter.h"
#include "tensorflow/compiler/xla/service/gpu/partition_assignment.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/llvm_ir/fused_ir_emitter.h"
#include "tensorflow/compiler/xla/service/llvm_ir/ir_array.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_loop.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/service/llvm_ir/loop_emitter.h"
#include "tensorflow/compiler/xla/service/llvm_ir/tuple_ops.h"
#include "tensorflow/compiler/xla/service/name_uniquer.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/window_util.h"
#include "tensorflow/core/lib/core/errors.h"

namespace xla {

using llvm_ir::IrName;
using llvm_ir::SetToFirstInsertPoint;

namespace gpu {

IrEmitter::IrEmitter(const HloModuleConfig& hlo_module_config,
                     IrEmitterContext* ir_emitter_context, bool is_nested)
    : ir_emitter_context_(ir_emitter_context),
      module_(ir_emitter_context->llvm_module()),
      ir_builder_(module_->getContext()),
      bindings_(ir_emitter_context->hlo_module(),
                &ir_emitter_context->buffer_assignment(), &ir_builder_, module_,
                is_nested),
      hlo_module_config_(hlo_module_config) {
  ir_builder_.setFastMathFlags(llvm_ir::GetFastMathFlags(
      /*fast_math_enabled=*/hlo_module_config.debug_options()
          .xla_enable_fast_math()));
}

Status IrEmitter::DefaultAction(HloInstruction* hlo) {
  ElementalIrEmitter::HloToElementGeneratorMap operand_to_generator;
  for (const HloInstruction* operand : hlo->operands()) {
    operand_to_generator[operand] = [=](const llvm_ir::IrArray::Index& index) {
      return GetIrArray(*operand).EmitReadArrayElement(index, &ir_builder_);
    };
  }
  return EmitTargetElementLoop(
      *hlo, GpuElementalIrEmitter(hlo_module_config_, module_, &ir_builder_,
                                  GetNestedComputer())
                .MakeElementGenerator(hlo, operand_to_generator));
}

Status IrEmitter::HandleConstant(HloInstruction* constant) {
  const Literal& literal = constant->literal();
  llvm::Constant* initializer =
      llvm_ir::ConvertLiteralToIrConstant(literal, module_);
  llvm::GlobalVariable* global_for_const = new llvm::GlobalVariable(
      *module_, initializer->getType(),
      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, initializer,
      /*Name=*/"");
  VLOG(2) << "HandleConstant: " << constant->ToString() << std::endl
          << "  emitted_value: " << llvm_ir::DumpToString(*global_for_const)
          << std::endl
          << "  its type: "
          << llvm_ir::DumpToString(*global_for_const->getType());
  bindings_.BindHloToIrValue(*constant, global_for_const);
  return Status::OK();
}

Status IrEmitter::HandleBitcast(HloInstruction* bitcast) {
  VLOG(2) << "HandleBitcast: " << bitcast->ToString();
  const HloInstruction* operand = bitcast->operand(0);
  // Bitcast is a no-op, but we still want to bind it to an llvm::Value
  // sometimes, e.g., when it's operand is a constant or a bitcast of a
  // constant.
  if (bindings_.BoundToIrValue(*operand)) {
    bindings_.BindHloToIrValue(*bitcast, GetBasePointer(*operand));
  }
  return Status::OK();
}

Status IrEmitter::HandleGetTupleElement(HloInstruction* get_tuple_element) {
  auto operand = get_tuple_element->operand(0);
  CHECK(bindings_.BoundToIrValue(*operand));
  bindings_.BindHloToIrValue(
      *get_tuple_element,
      llvm_ir::EmitGetTupleElement(
          get_tuple_element->shape(), get_tuple_element->tuple_index(),
          // TODO(b/26344050): tighten the alignment here
          // based on the real element type.
          /*alignment=*/1, GetBasePointer(*operand), &ir_builder_, module_));
  return Status::OK();
}

Status IrEmitter::HandleSort(HloInstruction*) {
  // TODO(b/26783907): Implement sort on GPU.
  return Unimplemented("sort");
}

Status IrEmitter::HandleSend(HloInstruction*) {
  return Unimplemented("Send is not implemented on GPU");
}

Status IrEmitter::HandleRecv(HloInstruction*) {
  return Unimplemented("Recv is not implemented on GPU");
}

Status IrEmitter::HandleTuple(HloInstruction* tuple) {
  std::vector<llvm::Value*> base_ptrs;
  for (const HloInstruction* operand : tuple->operands()) {
    base_ptrs.push_back(GetBasePointer(*operand));
  }
  llvm_ir::EmitTuple(GetIrArray(*tuple), base_ptrs, &ir_builder_, module_);
  return Status::OK();
}

Status IrEmitter::EmitCallToNestedComputation(
    const HloComputation& nested_computation,
    tensorflow::gtl::ArraySlice<llvm::Value*> operands, llvm::Value* output) {
  TF_RET_CHECK(nested_computation.num_parameters() > 0);
  llvm::Function*& emitted_function =
      computation_to_ir_function_[&nested_computation];
  if (emitted_function == nullptr) {
    IrEmitterNested ir_emitter_nested(hlo_module_config_, nested_computation,
                                      ir_emitter_context_);
    TF_RETURN_IF_ERROR(
        nested_computation.root_instruction()->Accept(&ir_emitter_nested));
    emitted_function = ir_emitter_nested.GetEmittedFunction();
  }

  std::vector<llvm::Value*> arguments(operands.begin(), operands.end());
  arguments.push_back(output);
  arguments.push_back(bindings_.GetTempBufferBase());
  ir_builder_.CreateCall(emitted_function, arguments);

  return Status::OK();
}

bool IrEmitter::MaybeEmitSpecialAtomicOperation(
    const HloComputation& computation, llvm::Value* output_address,
    llvm::Value* source_address) {
  CHECK_EQ(2, computation.num_parameters());

  if (computation.instruction_count() != 3) {
    // We special-case only computations with one computing instruction for now.
    // Such computation has exactly three instructions given it has two
    // parameters.
    return false;
  }

  HloOpcode root_opcode = computation.root_instruction()->opcode();
  PrimitiveType element_type =
      computation.root_instruction()->shape().element_type();
  llvm::Value* source = ir_builder_.CreateLoad(source_address, "source");
  if (root_opcode == HloOpcode::kAdd) {
    // NVPTX supports atomicAdd on F32 and integer types.
    if (element_type == F32) {
      // F32 + F32
      llvm_ir::EmitCallToIntrinsic(llvm::Intrinsic::nvvm_atomic_load_add_f32,
                                   {output_address, source},
                                   {output_address->getType()}, &ir_builder_);
      return true;
    }
    if (primitive_util::IsIntegralType(element_type)) {
      // integral + integral
      ir_builder_.CreateAtomicRMW(llvm::AtomicRMWInst::Add, output_address,
                                  source,
                                  llvm::AtomicOrdering::SequentiallyConsistent);
      return true;
    }
  }

  // NVPTX supports atomicMax and atomicMin on only integer types.
  if (root_opcode == HloOpcode::kMaximum &&
      primitive_util::IsIntegralType(element_type)) {
    // max(integral, integral)
    auto opcode = primitive_util::IsSignedIntegralType(element_type)
                      ? llvm::AtomicRMWInst::Max
                      : llvm::AtomicRMWInst::UMax;
    ir_builder_.CreateAtomicRMW(opcode, output_address, source,
                                llvm::AtomicOrdering::SequentiallyConsistent);
    return true;
  }

  if (root_opcode == HloOpcode::kMinimum &&
      primitive_util::IsIntegralType(element_type)) {
    // min(integral, integral)
    auto opcode = primitive_util::IsSignedIntegralType(element_type)
                      ? llvm::AtomicRMWInst::Min
                      : llvm::AtomicRMWInst::UMin;
    ir_builder_.CreateAtomicRMW(opcode, output_address, source,
                                llvm::AtomicOrdering::SequentiallyConsistent);
    return true;
  }

  return false;
}

Status IrEmitter::EmitAtomicOperationForNestedComputation(
    const HloComputation& computation, llvm::Value* output_address,
    llvm::Value* source_address) {
  if (computation.num_parameters() != 2) {
    // TODO(b/30258929): We only accept binary computations so far.
    return Unimplemented(
        "We only support atomic functions with exactly two parameters, but "
        "computation %s has %lld.",
        computation.name().c_str(), computation.num_parameters());
  }

  if (MaybeEmitSpecialAtomicOperation(computation, output_address,
                                      source_address)) {
    return Status::OK();
  }

  // Other binary computations can be made atomic as following (labels are basic
  // block names used in the IR emitting code later).
  //
  // atomic_op_loop_preheader:
  //   ...
  //   source = *source_address;
  //   old_output = *output_address;
  //   do {
  // atomic_op_loop_body_entry:
  //     new_output = computation(old_output, source);
  //     (old_output, success) =
  //         atomicCAS(output_address, old_output, new_output);
  //   } while (!success);
  //
  // atomic_op_loop_exit:
  //   ...
  //
  // TODO(jingyue): Consider encapsulate the logic of emitting control flow to
  // something similar to llvm_ir::ForLoop.
  //
  // Emit preparation code to the preheader.
  llvm::BasicBlock* loop_preheader_bb = ir_builder_.GetInsertBlock();
  llvm::Type* element_ir_type =
      output_address->getType()->getPointerElementType();
  // old_output = *output_address;
  llvm::Value* old_output_location = ir_builder_.CreateAlloca(
      element_ir_type, /*ArraySize=*/nullptr, "old_output_location");
  ir_builder_.CreateStore(ir_builder_.CreateLoad(output_address, "old_output"),
                          old_output_location);
  llvm::BasicBlock* loop_exit_bb = loop_preheader_bb->splitBasicBlock(
      ir_builder_.GetInsertPoint(), "atomic_op_loop_exit");

  // Emit the body of the loop that repeatedly invokes atomicCAS.
  llvm::BasicBlock* loop_body_bb =
      llvm::BasicBlock::Create(ir_builder_.getContext(), "atomic_op_loop_body",
                               ir_builder_.GetInsertBlock()->getParent());
  ir_builder_.SetInsertPoint(loop_body_bb);
  // Change preheader's successor from loop_exit_bb to loop_body_bb.
  loop_preheader_bb->getTerminator()->setSuccessor(0, loop_body_bb);
  // new_output = computation(old_output, source);
  llvm::Value* new_output_location = ir_builder_.CreateAlloca(
      element_ir_type, /*ArraySize=*/nullptr, "new_output_location");
  TF_RETURN_IF_ERROR(EmitCallToNestedComputation(
      computation, {old_output_location, source_address}, new_output_location));

  // (old_output, success) = atomicCAS(output_address, old_output, new_output);
  llvm::Type* element_int_ir_type =
      ir_builder_.getIntNTy(element_ir_type->getScalarSizeInBits());
  // cmpxchg accetps integer only, so we bitcast the operands (old_output and
  // new_output) to integers of the same bit width, and bitcast the result
  // back to the original element type.
  llvm::Value* old_output =
      ir_builder_.CreateLoad(old_output_location, "old_output");
  llvm::Value* new_output =
      ir_builder_.CreateLoad(new_output_location, "new_output");
  llvm::Value* ret_value = ir_builder_.CreateAtomicCmpXchg(
      ir_builder_.CreateBitCast(output_address,
                                element_int_ir_type->getPointerTo()),
      ir_builder_.CreateBitCast(old_output, element_int_ir_type),
      ir_builder_.CreateBitCast(new_output, element_int_ir_type),
      llvm::AtomicOrdering::SequentiallyConsistent,
      llvm::AtomicOrdering::SequentiallyConsistent);
  // cmpxchg returns a pair. The first element is the original value at
  // output_address and the second element is whether the swap is successful.
  ir_builder_.CreateStore(
      ir_builder_.CreateBitCast(
          ir_builder_.CreateExtractValue(ret_value, 0, "old_output"),
          element_ir_type),
      old_output_location);
  ir_builder_.CreateCondBr(
      ir_builder_.CreateExtractValue(ret_value, 1, "success"), loop_exit_bb,
      loop_body_bb);

  // Restore the insertion point to the exit basic block so that the caller of
  // this method can continue emitting code to the right place.
  SetToFirstInsertPoint(loop_exit_bb, &ir_builder_);
  return Status::OK();
}

Status IrEmitter::HandleSelect(HloInstruction* select) {
  auto pred = select->operand(0);
  auto on_true = select->operand(1);
  auto on_false = select->operand(2);
  TF_RET_CHECK(pred->shape().element_type() == PRED);

  if (ShapeUtil::IsTuple(select->shape())) {
    llvm_ir::EmitTupleSelect(GetIrArray(*select), GetIrArray(*pred),
                             GetBasePointer(*on_true),
                             GetBasePointer(*on_false), &ir_builder_, module_);
    return Status::OK();
  }

  // We must not call the subclass `DefaultAction` method, lest its
  // `HandleSelect` call `IrEmitter::HandleSelect` and its `DefaultAction`
  // assume no handler has already been called.
  return IrEmitter::DefaultAction(select);
}

Status IrEmitter::HandleDot(HloInstruction* dot) {
  auto lhs_instruction = dot->operand(0);
  auto rhs_instruction = dot->operand(1);
  const llvm_ir::IrArray& target_array = GetIrArray(*dot);
  const llvm_ir::IrArray& lhs_array = GetIrArray(*lhs_instruction);
  const llvm_ir::IrArray& rhs_array = GetIrArray(*rhs_instruction);

  const Shape& lhs_shape = lhs_instruction->shape();
  const Shape& rhs_shape = rhs_instruction->shape();

  if (ShapeUtil::IsScalar(lhs_shape) && ShapeUtil::IsScalar(rhs_shape)) {
    // If the operands are scalar, don't emit any loops.
    llvm::Value* lhs_value =
        lhs_array.EmitReadArrayElement(/*index=*/{}, &ir_builder_);
    llvm::Value* rhs_value =
        rhs_array.EmitReadArrayElement(/*index=*/{}, &ir_builder_);
    llvm::Value* result;
    if (ShapeUtil::ElementIsComplex(lhs_shape)) {
      auto real = [&](llvm::Value* x) {
        return ir_builder_.CreateExtractValue(x, {0});
      };
      auto imag = [&](llvm::Value* x) {
        return ir_builder_.CreateExtractValue(x, {1});
      };
      llvm::Value* real_result = ir_builder_.CreateFSub(
          ir_builder_.CreateFMul(real(lhs_value), real(rhs_value)),
          ir_builder_.CreateFMul(imag(lhs_value), imag(rhs_value)));
      llvm::Value* imag_result = ir_builder_.CreateFAdd(
          ir_builder_.CreateFMul(real(lhs_value), imag(rhs_value)),
          ir_builder_.CreateFMul(imag(lhs_value), real(rhs_value)));
      result = llvm::ConstantAggregateZero::get(lhs_array.GetElementLlvmType());
      result = ir_builder_.CreateInsertValue(result, real_result, {0});
      result = ir_builder_.CreateInsertValue(result, imag_result, {1});
    } else {
      result = ir_builder_.CreateFMul(lhs_value, rhs_value);
    }
    target_array.EmitWriteArrayElement(/*index=*/{}, result, &ir_builder_);
    return Status::OK();
  }

  // "Scalar dot non-scalar" or "non-scalar dot scalar" is invalid. See
  // the semantics of Dot in the XLA documentation for details.
  TF_RET_CHECK(!ShapeUtil::IsScalar(lhs_shape) &&
               !ShapeUtil::IsScalar(rhs_shape));

  // Reduce along the last dimension of the LHS and the second-to-last dimension
  // of the RHS. Vectors are a special case where the reduction dimension is 0
  // for both LHS and RHS. This results in a vector dot product producing a
  // scalar.
  const int64 lhs_reduction_dimension =
      ShapeUtil::GetDimensionNumber(lhs_shape, -1);
  const int64 rhs_reduction_dimension =
      ShapeUtil::Rank(rhs_shape) >= 2
          ? ShapeUtil::GetDimensionNumber(rhs_shape, -2)
          : 0;

  // Verify the reduction dimension in the two operands are the same size.
  TF_RET_CHECK(lhs_shape.dimensions(lhs_reduction_dimension) ==
               rhs_shape.dimensions(rhs_reduction_dimension));

  // Create loop nests which loop through the LHS operand dimensions and the RHS
  // operand dimensions. The reduction dimension of the LHS and RHS are handled
  // in a separate innermost loop which performs the sum of products.
  llvm_ir::ForLoopNest loop_nest(IrName(dot), &ir_builder_);
  llvm_ir::IrArray::Index lhs_index = EmitOperandArrayLoopNest(
      lhs_array, lhs_reduction_dimension, "lhs", &loop_nest);
  llvm_ir::IrArray::Index rhs_index = EmitOperandArrayLoopNest(
      rhs_array, rhs_reduction_dimension, "rhs", &loop_nest);

  // Create the reduction loop which does the sum of products reduction.
  std::unique_ptr<llvm_ir::ForLoop> reduction_loop = loop_nest.AddLoop(
      /*start_index=*/0,
      /*end_index=*/lhs_shape.dimensions(lhs_reduction_dimension),
      /*suffix=*/"reduction");

  // The final entry in the rhs and lhs indexes is the indvar of the reduction
  // loop.
  lhs_index[lhs_reduction_dimension] = reduction_loop->GetIndVarValue();
  rhs_index[rhs_reduction_dimension] = reduction_loop->GetIndVarValue();

  // For computing the sum of products we alloca a single location to store the
  // dot product result as we accumulate it within the reduction loop. After the
  // reduction loop we load the result and store into the output array.
  llvm::Type* accum_type = target_array.GetElementLlvmType();
  llvm::Value* accum_address = llvm_ir::EmitAllocaAtFunctionEntry(
      accum_type,       // The pointee type of the alloca instruction.
      "accum_address",  // The name of the alloca instruction.
      &ir_builder_);

  // Initialize the accumulator in the preheader to zero.
  new llvm::StoreInst(
      llvm::Constant::getNullValue(lhs_array.GetElementLlvmType()),  // init 0
      accum_address,  // The address.
      reduction_loop->GetPreheaderBasicBlock()
          ->getTerminator());  // The instruction this store is inserted before.

  // Emit the body of the reduction loop:
  //   accum = *accum_address
  //   updated_accum = accum + lhs_element * rhs_element
  //   *accum_address = updated_accum
  TF_RET_CHECK(!reduction_loop->GetBodyBasicBlock()->empty());
  ir_builder_.SetInsertPoint(
      &*reduction_loop->GetBodyBasicBlock()->getFirstInsertionPt());
  llvm::Value* lhs_element =
      lhs_array.EmitReadArrayElement(lhs_index, &ir_builder_);
  llvm::Value* rhs_element =
      rhs_array.EmitReadArrayElement(rhs_index, &ir_builder_);
  llvm::Value* accum = ir_builder_.CreateLoad(accum_address);
  llvm::Value* updated_accum;
  if (ShapeUtil::ElementIsComplex(lhs_shape)) {
#define REAL(x) ir_builder_.CreateExtractValue(x, {0})
#define IMAG(x) ir_builder_.CreateExtractValue(x, {1})
    llvm::Value* product_real = ir_builder_.CreateFSub(
        ir_builder_.CreateFMul(REAL(lhs_element), REAL(rhs_element)),
        ir_builder_.CreateFMul(IMAG(lhs_element), IMAG(rhs_element)));
    llvm::Value* product_imag = ir_builder_.CreateFAdd(
        ir_builder_.CreateFMul(REAL(lhs_element), IMAG(rhs_element)),
        ir_builder_.CreateFMul(IMAG(lhs_element), REAL(rhs_element)));
    updated_accum = ir_builder_.CreateInsertValue(
        accum, ir_builder_.CreateFAdd(REAL(accum), product_real), {0});
    updated_accum = ir_builder_.CreateInsertValue(
        updated_accum, ir_builder_.CreateFAdd(IMAG(accum), product_imag), {1});
#undef IMAG
#undef REAL
  } else {
    llvm::Value* product = ir_builder_.CreateFMul(lhs_element, rhs_element);
    updated_accum = ir_builder_.CreateFAdd(accum, product);
  }
  ir_builder_.CreateStore(updated_accum, accum_address);

  // After the reduction loop exits, store the accumulator into the target
  // address. The index into the target address is the concatenation of the rhs
  // and lhs indexes with the reduction dimensions removed. The terms from the
  // rhs index are the lower dimensions in the index so we add them first.
  llvm_ir::IrArray::Index target_index;
  for (size_t dimension = 0; dimension < lhs_index.size(); ++dimension) {
    if (dimension != lhs_reduction_dimension) {
      target_index.push_back(lhs_index[dimension]);
    }
  }
  for (size_t dimension = 0; dimension < rhs_index.size(); ++dimension) {
    if (dimension != rhs_reduction_dimension) {
      target_index.push_back(rhs_index[dimension]);
    }
  }
  SetToFirstInsertPoint(reduction_loop->GetExitBasicBlock(), &ir_builder_);
  target_array.EmitWriteArrayElement(
      target_index,
      ir_builder_.CreateLoad(
          accum_address),  // The value written to the target array.
      &ir_builder_);

  // Set the IR builder insert point to the exit basic block of the outer most
  // loop. This ensures later instructions are inserted after this loop nest.
  ir_builder_.SetInsertPoint(loop_nest.GetOuterLoopExitBasicBlock());

  return Status::OK();
}

Status IrEmitter::HandleConvolution(HloInstruction* convolution) {
  if (ShapeUtil::HasZeroElements(convolution->shape())) {
    // Emit no code for an empty output.
    return Status::OK();
  }
  // TODO(b/31409998): Support convolution with dilation.
  return Unimplemented(
      "Hit a case for convolution that is not implemented on GPU.");
}

Status IrEmitter::HandleCrossReplicaSum(HloInstruction* crs) {
  // TODO(b/33011107): Support cross replica sum on GPU.
  return Unimplemented(
      "Cross replica sum not implemented on GPU. See b/33011107.");
}

Status IrEmitter::HandleParameter(HloInstruction* parameter) {
  return Status::OK();
}

Status IrEmitter::HandleReduce(HloInstruction* reduce) {
  auto arg = reduce->operand(0);
  auto init_value = reduce->operand(1);
  tensorflow::gtl::ArraySlice<int64> dimensions(reduce->dimensions());
  HloComputation* function = reduce->to_apply();
  return EmitTargetElementLoop(
      *reduce,
      [=](const llvm_ir::IrArray::Index& index) -> StatusOr<llvm::Value*> {
        // Initialize an accumulator with init_value.
        llvm::AllocaInst* accumulator_addr =
            ir_builder_.CreateAlloca(llvm_ir::PrimitiveTypeToIrType(
                reduce->shape().element_type(), module_));
        ir_builder_.CreateStore(
            ir_builder_.CreateLoad(GetBasePointer(*init_value)),
            accumulator_addr);

        // The enclosing loops go over all the target elements. Now we have to
        // compute the actual target element. For this, we build a new loop nest
        // to iterate over all the reduction dimensions in the argument.
        // AddLoopsForShapeOnDimensions will return an Index where induction
        // Value*s are placed for each dimension in dimensions, and all the rest
        // are nullptrs.
        llvm_ir::ForLoopNest loops(IrName(reduce, "inner"), &ir_builder_);
        const llvm_ir::IrArray::Index reduced_dims_index =
            loops.AddLoopsForShapeOnDimensions(arg->shape(), dimensions,
                                               "reduction_dim");

        SetToFirstInsertPoint(loops.GetInnerLoopBodyBasicBlock(), &ir_builder_);

        // Build a full index for the input argument, using reduced_dims_index
        // as the base. In reduced_dims_index only the reduction dimensions are
        // filled in. We fill in the rest of the dimensions with induction
        // Value*s taken from 'index' which iterates over the target array.
        // See the high-level description in the XLA documentation for details.
        llvm_ir::IrArray::Index input_index = reduced_dims_index;
        llvm_ir::IrArray::Index::const_iterator it = index.begin();

        for (size_t i = 0; i < input_index.size(); ++i) {
          if (input_index[i] == nullptr) {
            input_index[i] = *it++;
          }
        }
        CHECK(index.end() == it);

        // Apply the reduction function to the loaded value.
        llvm::Value* input_address =
            GetIrArray(*arg).EmitArrayElementAddress(input_index, &ir_builder_);
        TF_RETURN_IF_ERROR(EmitCallToNestedComputation(
            *function, {accumulator_addr, input_address}, accumulator_addr));

        SetToFirstInsertPoint(loops.GetOuterLoopExitBasicBlock(), &ir_builder_);
        return ir_builder_.CreateLoad(accumulator_addr);
      });
}

Status IrEmitter::HandleFusion(HloInstruction* fusion) {
  // kFusion for library calls should be handled by
  // IrEmitterUnnested::HandleFusion.
  CHECK(HloInstruction::FusionKind::kLoop == fusion->fusion_kind());

  std::vector<llvm_ir::IrArray> parameter_arrays;
  for (HloInstruction* operand : fusion->operands()) {
    parameter_arrays.push_back(GetIrArray(*operand));
  }
  GpuElementalIrEmitter elemental_emitter(hlo_module_config_, module_,
                                          &ir_builder_, GetNestedComputer());
  FusedIrEmitter fused_emitter(parameter_arrays, &elemental_emitter);
  TF_RETURN_IF_ERROR(fusion->fused_expression_root()->Accept(&fused_emitter));

  return EmitTargetElementLoop(*fusion, fused_emitter.GetRootGenerator());
}

Status IrEmitter::HandleCall(HloInstruction* call) {
  std::vector<llvm::Value*> operand_addresses;
  for (HloInstruction* operand : call->operands()) {
    operand_addresses.push_back(GetBasePointer(*operand));
  }
  return EmitCallToNestedComputation(*call->to_apply(), operand_addresses,
                                     GetBasePointer(*call));
}

Status IrEmitter::HandleCustomCall(HloInstruction*) {
  return Unimplemented("custom-call");
}

Status IrEmitter::HandleInfeed(HloInstruction*) {
  return Unimplemented("Infeed is not supported on GPU (b/30467474).");
}

Status IrEmitter::HandleOutfeed(HloInstruction*) {
  return Unimplemented("Outfeed is not supported on GPU (b/34359662).");
}

Status IrEmitter::HandleRng(HloInstruction* random) {
  ElementalIrEmitter::HloToElementGeneratorMap operand_to_generator;
  for (const HloInstruction* operand : random->operands()) {
    operand_to_generator[operand] = [=](const llvm_ir::IrArray::Index& index) {
      return GetIrArray(*operand).EmitReadArrayElement(index, &ir_builder_);
    };
  }
  // Emits a single-threaded loop because the loop body generated by the element
  // generator for Rng can't be parallelized (b/32333178).
  return llvm_ir::LoopEmitter(
             GpuElementalIrEmitter(hlo_module_config_, module_, &ir_builder_,
                                   GetNestedComputer())
                 .MakeElementGenerator(random, operand_to_generator),
             GetIrArray(*random), &ir_builder_)
      .EmitLoop(IrName(random));
}

llvm_ir::IrArray::Index IrEmitter::EmitOperandArrayLoopNest(
    const llvm_ir::IrArray& operand_array, int64 reduction_dimension,
    tensorflow::StringPiece name_suffix, llvm_ir::ForLoopNest* loop_nest) {
  // Prepares the dimension list we will use to emit the loop nest. Outermost
  // loops are added first. Add loops in major-to-minor order, and skip the
  // reduction dimension.
  std::vector<int64> dimensions;
  const Shape& shape = operand_array.GetShape();
  for (int i = shape.layout().minor_to_major_size() - 1; i >= 0; --i) {
    int64 dimension = shape.layout().minor_to_major(i);
    if (dimension != reduction_dimension) {
      dimensions.push_back(dimension);
    }
  }

  // Create loop nest with one for-loop for each dimension of the
  // output.
  llvm_ir::IrArray::Index index =
      loop_nest->AddLoopsForShapeOnDimensions(shape, dimensions, name_suffix);
  // Verify every dimension except the reduction dimension was set in the index.
  for (size_t dimension = 0; dimension < index.size(); ++dimension) {
    if (dimension == reduction_dimension) {
      DCHECK_EQ(nullptr, index[dimension]);
    } else {
      DCHECK_NE(nullptr, index[dimension]);
    }
  }
  return index;
}

StatusOr<llvm::Value*> IrEmitter::ComputeNestedElement(
    const HloComputation& computation,
    tensorflow::gtl::ArraySlice<llvm::Value*> parameter_elements) {
  llvm::Value* return_buffer = llvm_ir::EmitAllocaAtFunctionEntry(
      llvm_ir::PrimitiveTypeToIrType(
          computation.root_instruction()->shape().element_type(), module_),
      "return_buffer", &ir_builder_);
  std::vector<llvm::Value*> parameter_buffers;
  for (llvm::Value* parameter_element : parameter_elements) {
    parameter_buffers.push_back(llvm_ir::EmitAllocaAtFunctionEntry(
        parameter_element->getType(), "parameter_buffer", &ir_builder_));
    ir_builder_.CreateStore(parameter_element, parameter_buffers.back());
  }
  TF_RETURN_IF_ERROR(EmitCallToNestedComputation(computation, parameter_buffers,
                                                 return_buffer));
  return ir_builder_.CreateLoad(return_buffer);
}

}  // namespace gpu
}  // namespace xla