aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/gpu/ir_emitter.cc
blob: b7c37bcf3ca910f10d18339dfe7f1d29f2a55c9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/gpu/ir_emitter.h"

#include <string>
#include <unordered_map>
#include <utility>

#include "tensorflow/core/platform/logging.h"
// IWYU pragma: no_include "llvm/IR/Intrinsics.gen.inc"
#include "absl/algorithm/container.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "tensorflow/compiler/xla/primitive_util.h"
#include "tensorflow/compiler/xla/service/elemental_ir_emitter.h"
#include "tensorflow/compiler/xla/service/gpu/elemental_ir_emitter.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emitter_nested.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.h"
#include "tensorflow/compiler/xla/service/gpu/partition_assignment.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/llvm_ir/fused_ir_emitter.h"
#include "tensorflow/compiler/xla/service/llvm_ir/ir_array.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_loop.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/service/llvm_ir/loop_emitter.h"
#include "tensorflow/compiler/xla/service/llvm_ir/tuple_ops.h"
#include "tensorflow/compiler/xla/service/name_uniquer.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/window_util.h"
#include "tensorflow/core/lib/core/errors.h"

namespace xla {

using llvm_ir::IrName;
using llvm_ir::SetToFirstInsertPoint;

namespace gpu {

IrEmitter::IrEmitter(const HloModuleConfig& hlo_module_config,
                     IrEmitterContext* ir_emitter_context, bool is_nested)
    : ir_emitter_context_(ir_emitter_context),
      module_(ir_emitter_context->llvm_module()),
      b_(module_->getContext()),
      bindings_(ir_emitter_context->hlo_module(),
                &ir_emitter_context->buffer_assignment(), &b_, module_,
                is_nested),
      hlo_module_config_(hlo_module_config) {
  b_.setFastMathFlags(llvm_ir::GetFastMathFlags(
      /*fast_math_enabled=*/hlo_module_config.debug_options()
          .xla_gpu_enable_fast_math()));
}

Status IrEmitter::DefaultAction(HloInstruction* hlo) {
  ElementalIrEmitter::HloToElementGeneratorMap operand_to_generator;
  for (const HloInstruction* operand : hlo->operands()) {
    operand_to_generator[operand] = [=](const llvm_ir::IrArray::Index& index) {
      return GetIrArray(*operand, *hlo).EmitReadArrayElement(index, &b_);
    };
  }
  return EmitTargetElementLoop(
      *hlo, GpuElementalIrEmitter(hlo_module_config_, module_, &b_,
                                  GetNestedComputer())
                .MakeElementGenerator(hlo, operand_to_generator));
}

Status IrEmitter::HandleConstant(HloInstruction* constant) {
  return Status::OK();
}

Status IrEmitter::HandleBitcast(HloInstruction* bitcast) {
  VLOG(2) << "HandleBitcast: " << bitcast->ToString();
  const HloInstruction* operand = bitcast->operand(0);
  // Bitcast is a no-op, but we still want to bind it to an llvm::Value
  // sometimes, e.g., when it's operand is a constant or a bitcast of a
  // constant.
  if (bindings_.BoundToIrValue(*operand)) {
    bindings_.BindHloToIrValue(*bitcast, GetBasePointer(*operand));
  }
  return Status::OK();
}

Status IrEmitter::HandleGetTupleElement(HloInstruction* get_tuple_element) {
  auto operand = get_tuple_element->operand(0);
  CHECK(bindings_.BoundToIrValue(*operand));
  bindings_.BindHloToIrValue(
      *get_tuple_element,
      llvm_ir::EmitGetTupleElement(
          get_tuple_element->shape(), get_tuple_element->tuple_index(),
          // TODO(b/26344050): tighten the alignment here
          // based on the real element type.
          /*alignment=*/1, GetBasePointer(*operand), &b_, module_));
  return Status::OK();
}

Status IrEmitter::HandleSend(HloInstruction*) {
  return Unimplemented("Send is not implemented on GPU");
}

Status IrEmitter::HandleSendDone(HloInstruction*) {
  return Unimplemented("Send-Done is not implemented on GPU");
}

Status IrEmitter::HandleRecv(HloInstruction*) {
  return Unimplemented("Recv is not implemented on GPU");
}

Status IrEmitter::HandleRecvDone(HloInstruction*) {
  return Unimplemented("Recv-done is not implemented on GPU");
}

Status IrEmitter::HandleScatter(HloInstruction*) {
  return Unimplemented("Scatter is not implemented on GPUs.");
}

Status IrEmitter::HandleTuple(HloInstruction* tuple) {
  std::vector<llvm::Value*> base_ptrs;
  for (const HloInstruction* operand : tuple->operands()) {
    base_ptrs.push_back(GetBasePointer(*operand));
  }
  llvm_ir::EmitTuple(GetIrArray(*tuple, *tuple), base_ptrs, &b_, module_);
  return Status::OK();
}

Status IrEmitter::EmitCallToNestedComputation(
    const HloComputation& nested_computation,
    absl::Span<llvm::Value* const> operands, llvm::Value* output) {
  TF_RET_CHECK(nested_computation.num_parameters() > 0);
  llvm::Function*& emitted_function =
      computation_to_ir_function_[&nested_computation];
  if (emitted_function == nullptr) {
    IrEmitterNested ir_emitter_nested(hlo_module_config_, nested_computation,
                                      ir_emitter_context_);
    TF_RETURN_IF_ERROR(
        nested_computation.root_instruction()->Accept(&ir_emitter_nested));
    emitted_function = ir_emitter_nested.GetEmittedFunction();
  }

  std::vector<llvm::Value*> arguments(operands.begin(), operands.end());
  arguments.push_back(output);
  arguments.push_back(bindings_.GetTempBufferBase());
  Call(emitted_function, arguments);

  return Status::OK();
}

bool IrEmitter::MaybeEmitDirectAtomicOperation(
    const HloComputation& computation, llvm::Value* output_address,
    llvm::Value* source_address) {
  CHECK_EQ(2, computation.num_parameters());

  if (computation.instruction_count() != 3) {
    // We special-case only computations with one computing instruction for now.
    // Such computation has exactly three instructions given it has two
    // parameters.
    return false;
  }

  HloOpcode root_opcode = computation.root_instruction()->opcode();
  PrimitiveType element_type =
      computation.root_instruction()->shape().element_type();
  bool is_atomic_integral = element_type == S32 || element_type == U32 ||
                            element_type == S64 || element_type == U64;
  llvm::Value* source = Load(source_address, "source");
  if (root_opcode == HloOpcode::kAdd) {
    // NVPTX supports atomicAdd on F32 and integer types.
    if (element_type == F32) {
      // F32 + F32
      llvm_ir::EmitCallToIntrinsic(llvm::Intrinsic::nvvm_atomic_load_add_f32,
                                   {output_address, source},
                                   {output_address->getType()}, &b_);
      return true;
    }
    if (is_atomic_integral) {
      // integral + integral
      AtomicRMW(llvm::AtomicRMWInst::Add, output_address, source,
                llvm::AtomicOrdering::SequentiallyConsistent);
      return true;
    }
  }

  // NVPTX supports atomicMax and atomicMin only on integer types.
  if (root_opcode == HloOpcode::kMaximum && is_atomic_integral) {
    // max(integral, integral)
    auto opcode = primitive_util::IsSignedIntegralType(element_type)
                      ? llvm::AtomicRMWInst::Max
                      : llvm::AtomicRMWInst::UMax;
    AtomicRMW(opcode, output_address, source,
              llvm::AtomicOrdering::SequentiallyConsistent);
    return true;
  }

  if (root_opcode == HloOpcode::kMinimum && is_atomic_integral) {
    // min(integral, integral)
    auto opcode = primitive_util::IsSignedIntegralType(element_type)
                      ? llvm::AtomicRMWInst::Min
                      : llvm::AtomicRMWInst::UMin;
    AtomicRMW(opcode, output_address, source,
              llvm::AtomicOrdering::SequentiallyConsistent);
    return true;
  }

  return false;
}

// Implements atomic binary operations using atomic compare-and-swap
// (atomicCAS) as follows:
//   1. Reads the value from the memory pointed to by output_address and
//     records it as old_output.
//   2. Uses old_output as one of the source operand to perform the binary
//     operation and stores the result in new_output.
//   3. Calls atomicCAS which implements compare-and-swap as an atomic
//     operation. In particular, atomicCAS reads the value from the memory
//     pointed to by output_address, and compares the value with old_output. If
//     the two values equal, new_output is written to the same memory location
//     and true is returned to indicate that the atomic operation succeeds.
//     Otherwise, the new value read from the memory is returned. In this case,
//     the new value is copied to old_output, and steps 2. and 3. are repeated
//     until atomicCAS succeeds.
//
// On Nvidia GPUs, atomicCAS can only operate on 32 bit and 64 bit integers. If
// the element type of the binary operation is 32 bits or 64 bits, the integer
// type of the same size is used for the atomicCAS operation. On the other hand,
// if the element type is smaller than 32 bits, int32 is used for the atomicCAS
// operation. In this case, atomicCAS reads and writes 32 bit values from
// the memory, which is larger than the memory size required by the original
// atomic binary operation. We mask off the last two bits of the output_address
// and use the result as an address to read the 32 bit values from the memory.
// This can avoid out of bound memory accesses if tensor buffers are 4 byte
// aligned and have a size of 4N, an assumption that the runtime can guarantee.
//
// The pseudo code is shown below. Variables *_address are pointers to a memory
// region with a size equal to the size of the atomicCAS operation, with the
// exception that new_output_address is a pointer to a memory region with a size
// equal to the element size of the binary operation.
//
//   element_size = sizeof(element_type);
//   atomic_size = max(32, element_size);
//   cas_new_output_address = alloca(atomic_size);
//   cas_old_output_address = alloca(atomic_size);
//   if (atomic_size != element_size) {
//     atomic_address = output_address & ((int64)(-4));
//     new_output_address = cas_new_output_address + (output_address & 3);
//   } else {
//     atomic_address = output_address;
//     new_output_address = cas_new_output_address;
//   }
//
//   *cas_old_output_address = *atomic_address;
//   do {
//     *cas_new_output_address = *cas_old_output_address;
//     *new_output_address = operation(*new_output_address, *source_address);
//     (*cas_old_output_address, success) =
//       atomicCAS(atomic_address, *cas_old_output_address,
//       *cas_new_output_address);
//   } while (!success);
//
Status IrEmitter::EmitAtomicOperationUsingCAS(const HloComputation& computation,
                                              llvm::Value* output_address,
                                              llvm::Value* source_address) {
  llvm::PointerType* output_address_type =
      llvm::dyn_cast<llvm::PointerType>(output_address->getType());
  CHECK_NE(output_address_type, nullptr);

  // element_type is the data type for the binary operation.
  llvm::Type* element_type = output_address_type->getPointerElementType();
  int element_size = llvm_ir::GetSizeInBits(element_type);
  llvm::Type* element_address_type = element_type->getPointerTo();

  int atomic_size = (element_size < 32) ? 32 : element_size;
  llvm::Type* atomic_type = b_.getIntNTy(atomic_size);
  llvm::Type* atomic_address_type =
      atomic_type->getPointerTo(output_address_type->getPointerAddressSpace());

  // cas_old_output_address and cas_new_output_address point to the scratch
  // memory where we store the old and new values for the repeated atomicCAS
  // operations.
  llvm::Value* cas_old_output_address =
      Alloca(atomic_type, /*ArraySize=*/nullptr, "cas_old_output_address");
  llvm::Value* cas_new_output_address =
      Alloca(atomic_type, /*ArraySize=*/nullptr, "cas_new_output_address");

  // Emit preparation code to the preheader.
  llvm::BasicBlock* loop_preheader_bb = b_.GetInsertBlock();

  llvm::Value* atomic_memory_address;
  // binop_output_address points to the scratch memory that stores the
  // result of the binary operation.
  llvm::Value* binop_output_address;
  if (element_size < 32) {
    // Assume the element size is an integer number of bytes.
    CHECK_EQ((element_size % sizeof(char)), 0);
    llvm::Type* address_int_type =
        module_->getDataLayout().getIntPtrType(output_address_type);
    atomic_memory_address = PtrToInt(output_address, address_int_type);
    llvm::Value* mask = llvm::ConstantInt::get(address_int_type, 3);
    llvm::Value* offset = And(atomic_memory_address, mask);
    mask = llvm::ConstantInt::get(address_int_type, -4);
    atomic_memory_address = And(atomic_memory_address, mask);
    atomic_memory_address =
        IntToPtr(atomic_memory_address, atomic_address_type);
    binop_output_address =
        Add(PtrToInt(cas_new_output_address, address_int_type), offset);
    binop_output_address = IntToPtr(binop_output_address, element_address_type);
  } else {
    atomic_memory_address = BitCast(output_address, atomic_address_type);
    binop_output_address =
        BitCast(cas_new_output_address, element_address_type);
  }

  // Use the value from the memory that atomicCAS operates on to initialize
  // cas_old_output.
  llvm::Value* cas_old_output = Load(atomic_memory_address, "cas_old_output");
  Store(cas_old_output, cas_old_output_address);

  llvm::BasicBlock* loop_exit_bb = loop_preheader_bb->splitBasicBlock(
      b_.GetInsertPoint(), "atomic_op_loop_exit");
  llvm::BasicBlock* loop_body_bb = llvm::BasicBlock::Create(
      b_.getContext(), "atomic_op_loop_body", b_.GetInsertBlock()->getParent());
  b_.SetInsertPoint(loop_body_bb);
  // Change preheader's successor from loop_exit_bb to loop_body_bb.
  loop_preheader_bb->getTerminator()->setSuccessor(0, loop_body_bb);

  // Emit the body of the loop that repeatedly invokes atomicCAS.
  //
  // Use cas_old_output to initialize cas_new_output.
  cas_old_output = Load(cas_old_output_address, "cas_old_output");
  Store(cas_old_output, cas_new_output_address);
  // Emits code to calculate new_output = operation(old_output, source);
  TF_RETURN_IF_ERROR(EmitCallToNestedComputation(
      computation, {binop_output_address, source_address},
      binop_output_address));

  llvm::Value* cas_new_output = Load(cas_new_output_address, "cas_new_output");

  // Emit code to perform the atomicCAS operation
  // (cas_old_output, success) = atomicCAS(memory_address, cas_old_output,
  //                                       cas_new_output);
  llvm::Value* ret_value =
      AtomicCmpXchg(atomic_memory_address, cas_old_output, cas_new_output,
                    llvm::AtomicOrdering::SequentiallyConsistent,
                    llvm::AtomicOrdering::SequentiallyConsistent);

  // Extract the memory value returned from atomicCAS and store it as
  // cas_old_output.
  Store(ExtractValue(ret_value, 0, "cas_old_output"), cas_old_output_address);
  // Extract the success bit returned from atomicCAS and generate a
  // conditional branch on the success bit.
  CondBr(ExtractValue(ret_value, 1, "success"), loop_exit_bb, loop_body_bb);

  // Set the insertion point to the exit basic block so that the caller of
  // this method can continue emitting code to the right place.
  SetToFirstInsertPoint(loop_exit_bb, &b_);
  return Status::OK();
}

Status IrEmitter::EmitAtomicOperationForNestedComputation(
    const HloComputation& computation, llvm::Value* output_address,
    llvm::Value* source_address) {
  if (computation.num_parameters() != 2) {
    // TODO(b/30258929): We only accept binary computations so far.
    return Unimplemented(
        "We only support atomic functions with exactly two parameters, but "
        "computation %s has %d.",
        computation.name(), computation.num_parameters());
  }

  if (MaybeEmitDirectAtomicOperation(computation, output_address,
                                     source_address)) {
    return Status::OK();
  }

  return EmitAtomicOperationUsingCAS(computation, output_address,
                                     source_address);
}

Status IrEmitter::HandleSelect(HloInstruction* select) {
  auto pred = select->operand(0);
  TF_RET_CHECK(pred->shape().element_type() == PRED);
  // We must not call the subclass `DefaultAction` method, lest its
  // `HandleSelect` call `IrEmitter::HandleSelect` and its `DefaultAction`
  // assume no handler has already been called.
  return IrEmitter::DefaultAction(select);
}

Status IrEmitter::HandleTupleSelect(HloInstruction* tuple_select) {
  auto pred = tuple_select->operand(0);
  auto on_true = tuple_select->operand(1);
  auto on_false = tuple_select->operand(2);
  TF_RET_CHECK(pred->shape().element_type() == PRED);
  TF_RET_CHECK(ShapeUtil::IsScalar(pred->shape()));
  TF_RET_CHECK(ShapeUtil::IsTuple(tuple_select->shape()));
  llvm_ir::EmitTupleSelect(GetIrArray(*tuple_select, *tuple_select),
                           GetIrArray(*pred, *tuple_select),
                           GetBasePointer(*on_true), GetBasePointer(*on_false),
                           &b_, module_);
  return Status::OK();
}

namespace {
llvm::Value* Real(llvm::Value* x, llvm::IRBuilder<>* b) {
  return b->CreateExtractValue(x, {0});
}

llvm::Value* Imag(llvm::Value* x, llvm::IRBuilder<>* b) {
  return b->CreateExtractValue(x, {1});
}

std::pair<llvm::Value*, llvm::Value*> MultiplyComplex(llvm::Value* lhs_value,
                                                      llvm::Value* rhs_value,
                                                      llvm::IRBuilder<>* b) {
  llvm::Value* lhs_real = Real(lhs_value, b);
  llvm::Value* lhs_imag = Imag(lhs_value, b);
  llvm::Value* rhs_real = Real(rhs_value, b);
  llvm::Value* rhs_imag = Imag(rhs_value, b);
  llvm::Value* real_result1 = b->CreateFMul(lhs_real, rhs_real);
  llvm::Value* real_result2 = b->CreateFMul(lhs_imag, rhs_imag);
  llvm::Value* real_result = b->CreateFSub(real_result1, real_result2);
  llvm::Value* imag_result1 = b->CreateFMul(lhs_real, rhs_imag);
  llvm::Value* imag_result2 = b->CreateFMul(lhs_imag, rhs_real);
  llvm::Value* imag_result = b->CreateFAdd(imag_result1, imag_result2);
  return {real_result, imag_result};
}
}  // namespace

Status IrEmitter::HandleDot(HloInstruction* dot) {
  auto lhs_instruction = dot->operand(0);
  auto rhs_instruction = dot->operand(1);
  const llvm_ir::IrArray& target_array = GetIrArray(*dot, *dot);
  const llvm_ir::IrArray& lhs_array = GetIrArray(*lhs_instruction, *dot);
  const llvm_ir::IrArray& rhs_array = GetIrArray(*rhs_instruction, *dot);

  const Shape& lhs_shape = lhs_instruction->shape();
  const Shape& rhs_shape = rhs_instruction->shape();
  const DotDimensionNumbers& dnums = dot->dot_dimension_numbers();
  CHECK_EQ(dnums.lhs_batch_dimensions_size(),
           dnums.rhs_batch_dimensions_size());

  // TODO(b/110211620): Convert to use i32 index_type when it is possible.
  llvm::Type* index_type = b_.getInt64Ty();
  llvm_ir::IrArray::Index element_index(index_type);
  if (ShapeUtil::IsScalar(lhs_shape) && ShapeUtil::IsScalar(rhs_shape)) {
    // If the operands are scalar, don't emit any loops.
    llvm::Value* lhs_value =
        lhs_array.EmitReadArrayElement(/*index=*/element_index, &b_);
    llvm::Value* rhs_value =
        rhs_array.EmitReadArrayElement(/*index=*/element_index, &b_);
    llvm::Value* result;
    if (ShapeUtil::ElementIsComplex(lhs_shape)) {
      auto value = MultiplyComplex(lhs_value, rhs_value, &b_);
      result = llvm::ConstantAggregateZero::get(lhs_array.GetElementLlvmType());
      result = InsertValue(result, value.first, {0});
      result = InsertValue(result, value.second, {1});
    } else {
      result = FMul(lhs_value, rhs_value);
    }
    target_array.EmitWriteArrayElement(/*index=*/element_index, result, &b_);
    return Status::OK();
  }

  // "Scalar dot non-scalar" or "non-scalar dot scalar" is invalid. See
  // the semantics of Dot in the XLA documentation for details.
  TF_RET_CHECK(!ShapeUtil::IsScalar(lhs_shape) &&
               !ShapeUtil::IsScalar(rhs_shape));

  // Reduce along the last dimension of the LHS and the second-to-last dimension
  // of the RHS. Vectors are a special case where the reduction dimension is 0
  // for both LHS and RHS. This results in a vector dot product producing a
  // scalar.
  const int64 lhs_reduction_dimension =
      ShapeUtil::GetDimensionNumber(lhs_shape, -1);
  const int64 rhs_reduction_dimension =
      ShapeUtil::Rank(rhs_shape) >= 2 + dnums.lhs_batch_dimensions_size()
          ? ShapeUtil::GetDimensionNumber(rhs_shape, -2)
          : dnums.lhs_batch_dimensions_size();

  // Check that the batch dims don't cover the last two dims.
  for (int64 batch_dim : dnums.lhs_batch_dimensions()) {
    CHECK_NE(lhs_reduction_dimension, batch_dim);
    CHECK_NE(rhs_reduction_dimension, batch_dim);
  }

  // Verify the reduction dimension in the two operands are the same size.
  TF_RET_CHECK(lhs_shape.dimensions(lhs_reduction_dimension) ==
               rhs_shape.dimensions(rhs_reduction_dimension));

  // Create loop nests which loop through the LHS operand dimensions and the RHS
  // operand dimensions. The reduction dimension of the LHS and RHS are handled
  // in a separate innermost loop which performs the sum of products.
  llvm_ir::ForLoopNest loop_nest(IrName(dot), &b_);
  llvm_ir::IrArray::Index lhs_index = loop_nest.EmitOperandArrayLoopNest(
      lhs_array, /*dimension_to_skip=*/lhs_reduction_dimension, "lhs");
  llvm_ir::IrArray::Index rhs_index = loop_nest.EmitOperandArrayLoopNest(
      rhs_array, /*dimension_to_skip=*/rhs_reduction_dimension, "rhs");

  // We don't have to iterate over the batch dimensions in both arrays, simplify
  // the loop nest of the rhs.
  for (int i = 0; i != dnums.lhs_batch_dimensions_size(); ++i) {
    DCHECK(absl::c_linear_search(dnums.lhs_batch_dimensions(), i));
    rhs_index[i] = lhs_index[i];
  }

  // Create the reduction loop which does the sum of products reduction.
  std::unique_ptr<llvm_ir::ForLoop> reduction_loop = loop_nest.AddLoop(
      /*start_index=*/0,
      /*end_index=*/lhs_shape.dimensions(lhs_reduction_dimension),
      /*suffix=*/"reduction");

  // The final entry in the rhs and lhs indexes is the indvar of the reduction
  // loop.
  lhs_index[lhs_reduction_dimension] = reduction_loop->GetIndVarValue();
  rhs_index[rhs_reduction_dimension] = reduction_loop->GetIndVarValue();

  // For computing the sum of products we alloca a single location to store the
  // dot product result as we accumulate it within the reduction loop. After the
  // reduction loop we load the result and store into the output array.
  llvm::Type* accum_type = target_array.GetElementLlvmType();
  llvm::Value* accum_address = llvm_ir::EmitAllocaAtFunctionEntry(
      accum_type,       // The pointee type of the alloca instruction.
      "accum_address",  // The name of the alloca instruction.
      &b_);

  // Initialize the accumulator in the preheader to zero.
  new llvm::StoreInst(
      llvm::Constant::getNullValue(lhs_array.GetElementLlvmType()),  // init 0
      accum_address,  // The address.
      reduction_loop->GetPreheaderBasicBlock()
          ->getTerminator());  // The instruction this store is inserted before.

  // Emit the body of the reduction loop:
  //   accum = *accum_address
  //   updated_accum = accum + lhs_element * rhs_element
  //   *accum_address = updated_accum
  TF_RET_CHECK(!reduction_loop->GetBodyBasicBlock()->empty());
  b_.SetInsertPoint(
      &*reduction_loop->GetBodyBasicBlock()->getFirstInsertionPt());
  llvm::Value* lhs_element = lhs_array.EmitReadArrayElement(lhs_index, &b_);
  llvm::Value* rhs_element = rhs_array.EmitReadArrayElement(rhs_index, &b_);
  llvm::Value* accum = Load(accum_address);
  llvm::Value* updated_accum;
  if (ShapeUtil::ElementIsComplex(lhs_shape)) {
    auto value = MultiplyComplex(lhs_element, rhs_element, &b_);
    llvm::Value* accum_real = Real(accum, &b_);
    llvm::Value* real_sum = FAdd(accum_real, value.first);
    updated_accum = InsertValue(accum, real_sum, {0});
    llvm::Value* accum_imag = Imag(accum, &b_);
    llvm::Value* imag_sum = FAdd(accum_imag, value.second);
    updated_accum = InsertValue(updated_accum, imag_sum, {1});
  } else {
    llvm::Value* product = FMul(lhs_element, rhs_element);
    updated_accum = FAdd(accum, product);
  }
  Store(updated_accum, accum_address);

  // After the reduction loop exits, store the accumulator into the target
  // address. The index into the target address is the concatenation of the rhs
  // and lhs indexes with the reduction dimensions removed. The terms from the
  // rhs index are the lower dimensions in the index so we add them first.
  llvm_ir::IrArray::Index target_index(index_type);
  for (size_t dimension = 0; dimension < lhs_index.size(); ++dimension) {
    if (dimension != lhs_reduction_dimension) {
      target_index.push_back(lhs_index[dimension]);
    }
  }
  // Skip over the batch dimensions to not have them in the index twice.
  for (size_t dimension = dnums.lhs_batch_dimensions_size();
       dimension < rhs_index.size(); ++dimension) {
    if (dimension != rhs_reduction_dimension) {
      target_index.push_back(rhs_index[dimension]);
    }
  }
  SetToFirstInsertPoint(reduction_loop->GetExitBasicBlock(), &b_);
  target_array.EmitWriteArrayElement(
      target_index,
      Load(accum_address),  // The value written to the target array.
      &b_);

  // Set the IR builder insert point to the exit basic block of the outer most
  // loop. This ensures later instructions are inserted after this loop nest.
  b_.SetInsertPoint(loop_nest.GetOuterLoopExitBasicBlock());

  return Status::OK();
}

Status IrEmitter::HandleConvolution(HloInstruction* convolution) {
  if (ShapeUtil::IsZeroElementArray(convolution->shape())) {
    // Emit no code for an empty output.
    return Status::OK();
  }
  // TODO(b/31409998): Support convolution with dilation.
  return Unimplemented(
      "Hit a case for convolution that is not implemented on GPU.");
}

Status IrEmitter::HandleFft(HloInstruction* fft) {
  if (ShapeUtil::IsZeroElementArray(fft->shape())) {
    // Emit no code for an empty output.
    return Status::OK();
  }
  return Unimplemented("Hit a case for fft that is not implemented on GPU.");
}

Status IrEmitter::HandleCrossReplicaSum(HloInstruction* crs) {
  // TODO(b/33011107): Support cross replica sum on GPU.
  return Unimplemented("CrossReplicaSum is not implemented on GPU.");
}

Status IrEmitter::HandleParameter(HloInstruction* parameter) {
  return Status::OK();
}

Status IrEmitter::HandleReduce(HloInstruction* reduce) {
  // TODO(b/112040122): Support variadic reduce.
  if (!ShapeUtil::IsArray(reduce->shape())) {
    return Unimplemented("Variadic reduce is not supported on GPU");
  }
  auto arg = reduce->operand(0);
  auto init_value = reduce->operand(1);
  absl::Span<const int64> dimensions(reduce->dimensions());
  HloComputation* function = reduce->to_apply();
  return EmitTargetElementLoop(
      *reduce,
      [=](const llvm_ir::IrArray::Index& index) -> StatusOr<llvm::Value*> {
        // Initialize an accumulator with init_value.
        llvm::AllocaInst* accumulator_addr =
            Alloca(llvm_ir::PrimitiveTypeToIrType(
                reduce->shape().element_type(), module_));
        Store(Load(GetBasePointer(*init_value)), accumulator_addr);

        // The enclosing loops go over all the target elements. Now we have to
        // compute the actual target element. For this, we build a new loop nest
        // to iterate over all the reduction dimensions in the argument.
        // AddLoopsForShapeOnDimensions will return an Index where induction
        // Value*s are placed for each dimension in dimensions, and all the rest
        // are nullptrs.
        llvm_ir::ForLoopNest loops(IrName(reduce, "inner"), &b_);
        const llvm_ir::IrArray::Index reduced_dims_index =
            loops.AddLoopsForShapeOnDimensions(arg->shape(), dimensions,
                                               "reduction_dim");

        SetToFirstInsertPoint(loops.GetInnerLoopBodyBasicBlock(), &b_);

        // Build a full index for the input argument, using reduced_dims_index
        // as the base. In reduced_dims_index only the reduction dimensions are
        // filled in. We fill in the rest of the dimensions with induction
        // Value*s taken from 'index' which iterates over the target array.
        // See the high-level description in the XLA documentation for details.
        llvm_ir::IrArray::Index input_index = reduced_dims_index;
        llvm_ir::IrArray::Index::const_iterator it = index.begin();

        for (size_t i = 0; i < input_index.size(); ++i) {
          if (input_index[i] == nullptr) {
            input_index[i] = *it++;
          }
        }
        CHECK(index.end() == it);

        // Apply the reduction function to the loaded value.
        llvm::Value* input_address =
            GetIrArray(*arg, *reduce).EmitArrayElementAddress(input_index, &b_);
        TF_RETURN_IF_ERROR(EmitCallToNestedComputation(
            *function, {accumulator_addr, input_address}, accumulator_addr));

        SetToFirstInsertPoint(loops.GetOuterLoopExitBasicBlock(), &b_);
        return Load(accumulator_addr);
      });
}

Status IrEmitter::HandleFusion(HloInstruction* fusion) {
  // kFusion for library calls should be handled by
  // IrEmitterUnnested::HandleFusion.
  CHECK(HloInstruction::FusionKind::kLoop == fusion->fusion_kind());

  std::vector<llvm_ir::IrArray> parameter_arrays;
  for (HloInstruction* operand : fusion->operands()) {
    parameter_arrays.push_back(GetIrArray(*operand, *fusion));
  }
  GpuElementalIrEmitter elemental_emitter(hlo_module_config_, module_, &b_,
                                          GetNestedComputer());
  FusedIrEmitter fused_emitter(parameter_arrays, &elemental_emitter);
  TF_RETURN_IF_ERROR(fusion->fused_expression_root()->Accept(&fused_emitter));

  return EmitTargetElementLoop(*fusion, fused_emitter.GetRootGenerator());
}

Status IrEmitter::HandleCall(HloInstruction* call) {
  std::vector<llvm::Value*> operand_addresses;
  for (HloInstruction* operand : call->operands()) {
    operand_addresses.push_back(GetBasePointer(*operand));
  }
  return EmitCallToNestedComputation(*call->to_apply(), operand_addresses,
                                     GetBasePointer(*call));
}

Status IrEmitter::HandleCustomCall(HloInstruction*) {
  return Unimplemented("custom-call");
}

Status IrEmitter::HandleInfeed(HloInstruction*) {
  // TODO(b/30467474): Implement infeed on GPU.
  return Unimplemented("Infeed is not supported on GPU.");
}

Status IrEmitter::HandleOutfeed(HloInstruction*) {
  // TODO(b/34359662): Implement outfeed on GPU.
  return Unimplemented("Outfeed is not supported on GPU.");
}

Status IrEmitter::HandleBatchNormInference(HloInstruction*) {
  return Unimplemented(
      "The GPU backend does not implement BatchNormInference directly.  It "
      "should be lowered before IR emission to HLO-soup using "
      "BatchNormRewriter or to a cudnn CustomCall using "
      "CudnnBatchNormRewriter.");
}

Status IrEmitter::HandleBatchNormTraining(HloInstruction*) {
  return Unimplemented(
      "The GPU backend does not implement BatchNormTraining directly.  It "
      "should be lowered before IR emission to HLO-soup using "
      "BatchNormRewriter or to a cudnn CustomCall using "
      "CudnnBatchNormRewriter.");
}

Status IrEmitter::HandleBatchNormGrad(HloInstruction*) {
  return Unimplemented(
      "The GPU backend does not implement BatchNormGrad directly.  It should "
      "be lowered before IR emission to HLO-soup (using BatchNormRewriter) or "
      "to a cudnn CustomCall using CudnnBatchNormRewriter.");
}

StatusOr<llvm::Value*> IrEmitter::ComputeNestedElement(
    const HloComputation& computation,
    absl::Span<llvm::Value* const> parameter_elements) {
  llvm::Value* return_buffer = llvm_ir::EmitAllocaAtFunctionEntry(
      llvm_ir::PrimitiveTypeToIrType(
          computation.root_instruction()->shape().element_type(), module_),
      "return_buffer", &b_);
  std::vector<llvm::Value*> parameter_buffers;
  for (llvm::Value* parameter_element : parameter_elements) {
    parameter_buffers.push_back(llvm_ir::EmitAllocaAtFunctionEntry(
        parameter_element->getType(), "parameter_buffer", &b_));
    Store(parameter_element, parameter_buffers.back());
  }
  TF_RETURN_IF_ERROR(EmitCallToNestedComputation(computation, parameter_buffers,
                                                 return_buffer));
  return Load(return_buffer);
}

std::vector<llvm_ir::IrArray> IrEmitter::ConstructIrArrayForOutputs(
    const HloInstruction& hlo) {
  std::vector<llvm_ir::IrArray> output_arrays;
  if (ShapeUtil::IsTuple(hlo.shape())) {
    int64 num_outputs = ShapeUtil::TupleElementCount(hlo.shape());
    output_arrays.reserve(num_outputs);
    for (int64 i = 0; i < num_outputs; ++i) {
      output_arrays.push_back(GetIrArray(hlo, hlo, {i}));
    }
  } else {
    output_arrays.push_back(GetIrArray(hlo, hlo));
  }
  return output_arrays;
}

}  // namespace gpu
}  // namespace xla