aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/gpu/ir_emission_utils.cc
blob: ec3d8f9405840bb7be97ba5cd5725a4ac68a15a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/gpu/ir_emission_utils.h"

#include <algorithm>
#include <vector>

#include "llvm/IR/Module.h"
#include "tensorflow/compiler/xla/layout_util.h"
#include "tensorflow/compiler/xla/service/gpu/backend_configs.pb.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_module.h"
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/window_util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/protobuf.h"

namespace xla {
namespace gpu {

namespace {

// Return whether the given shape is a matrix with no padding.
bool IsRank2WithNoPadding(const Shape& shape, int64 batch_dimensions_size) {
  return ShapeUtil::Rank(shape) == batch_dimensions_size + 2 &&
         !LayoutUtil::IsPadded(shape);
}

// In a gemm operation where output = lhs * rhs, check whether the given shapes
// are valid for the operation.
bool AreValidGemmShapes(const Shape& lhs_shape, const Shape& rhs_shape,
                        const Shape& output_shape,
                        int64 batch_dimensions_size) {
  // The inputs and the output must
  // 1) be matrices with no padding and a non-zero number of elements,
  // 2) have an allowed element type.
  PrimitiveType output_primitive_type = output_shape.element_type();
  bool type_is_allowed =
      (output_primitive_type == F16 || output_primitive_type == F32 ||
       output_primitive_type == F64 || output_primitive_type == C64);
  return type_is_allowed &&
         IsRank2WithNoPadding(lhs_shape, batch_dimensions_size) &&
         IsRank2WithNoPadding(rhs_shape, batch_dimensions_size) &&
         IsRank2WithNoPadding(output_shape, batch_dimensions_size) &&
         !ShapeUtil::IsZeroElementArray(lhs_shape) &&
         !ShapeUtil::IsZeroElementArray(rhs_shape);
}

bool DotImplementedAsGemm(const HloInstruction& dot) {
  CHECK_EQ(dot.opcode(), HloOpcode::kDot);
  const Shape& lhs_shape = dot.operand(0)->shape();
  const Shape& rhs_shape = dot.operand(1)->shape();
  const DotDimensionNumbers& dim_numbers = dot.dot_dimension_numbers();

  // If gemm can accept the operand shapes, use it rather than a custom
  // kernel.
  if (AreValidGemmShapes(lhs_shape, rhs_shape, dot.shape(),
                         dim_numbers.lhs_batch_dimensions_size())) {
    // The size of the reduction dimension should match. The shape inference
    // guarantees this invariant, so the check here is for programming
    // errors.
    CHECK_EQ(lhs_shape.dimensions(dim_numbers.lhs_contracting_dimensions(0)),
             rhs_shape.dimensions(dim_numbers.rhs_contracting_dimensions(0)));
    return true;
  }
  return false;
}
}  // namespace

bool ImplementedAsGemm(const HloInstruction& hlo) {
  // For certain types of Dot, we can call pre-canned BLAS gemm.
  if (hlo.opcode() == HloOpcode::kDot) {
    return DotImplementedAsGemm(hlo);
  }

  if (hlo.opcode() == HloOpcode::kFusion &&
      hlo.fusion_kind() == HloInstruction::FusionKind::kOutput &&
      hlo.fused_expression_root()->opcode() == HloOpcode::kMultiply) {
    // Try to find the dot inside the output fusion node.
    const HloInstruction* dot = hlo.fused_expression_root()->operand(0);
    if (dot->opcode() != HloOpcode::kDot) {
      dot = hlo.fused_expression_root()->operand(1);
    }
    if (dot->opcode() == HloOpcode::kDot) {
      return DotImplementedAsGemm(*dot);
    }
  }

  return false;
}

const char* const kCudnnBatchNormForwardInferenceCallTarget =
    "__cudnn$batchNormalizationForwardInference";
const char* const kCudnnBatchNormForwardTrainingCallTarget =
    "__cudnn$batchNormalizationForwardTraining";
const char* const kCudnnBatchNormBackwardCallTarget =
    "__cudnn$batchNormalizationBackward";

bool IsCustomCallToDnnBatchNorm(const HloInstruction& hlo) {
  if (hlo.opcode() != HloOpcode::kCustomCall) {
    return false;
  }
  const auto& target = hlo.custom_call_target();
  return target == kCudnnBatchNormForwardInferenceCallTarget ||
         target == kCudnnBatchNormForwardTrainingCallTarget ||
         target == kCudnnBatchNormBackwardCallTarget;
}

const char* const kCudnnConvForwardCallTarget = "__cudnn$convForward";
const char* const kCudnnConvBackwardInputCallTarget =
    "__cudnn$convBackwardInput";
const char* const kCudnnConvBackwardFilterCallTarget =
    "__cudnn$convBackwardFilter";
const char* const kCudnnConvBiasActivationForwardCallTarget =
    "__cudnn$convBiasActivationForward";

bool IsCustomCallToDnnConvolution(const HloInstruction& hlo) {
  if (hlo.opcode() != HloOpcode::kCustomCall) {
    return false;
  }
  const auto& target = hlo.custom_call_target();
  return target == kCudnnConvForwardCallTarget ||
         target == kCudnnConvBackwardInputCallTarget ||
         target == kCudnnConvBackwardFilterCallTarget ||
         target == kCudnnConvBiasActivationForwardCallTarget;
}

bool ImplementedAsLibraryCall(const HloInstruction& hlo) {
  return ImplementedAsGemm(hlo) || IsCustomCallToDnnBatchNorm(hlo) ||
         IsCustomCallToDnnConvolution(hlo);
}

bool IsReductionToVector(const HloInstruction& reduce) {
  if (HloOpcode::kReduce != reduce.opcode()) {
    return false;
  }
  const HloInstruction* input = reduce.operand(0);
  std::vector<int64> dims_to_keep;
  for (int64 dim = 0; dim < input->shape().dimensions().size(); ++dim) {
    if (!std::count(reduce.dimensions().begin(), reduce.dimensions().end(),
                    dim)) {
      dims_to_keep.push_back(dim);
    }
  }
  return LayoutUtil::AreDimensionsConsecutive(input->shape().layout(),
                                              dims_to_keep) &&
         ShapeUtil::Equal(reduce.shape(), ShapeUtil::FilterDimensions(
                                              [&dims_to_keep](int64 dim) {
                                                return std::count(
                                                    dims_to_keep.begin(),
                                                    dims_to_keep.end(), dim);
                                              },
                                              input->shape()));
}

// This emits a device-side call to
// "i32 vprintf(i8* fmt, arguments_type* arguments)" in the driver; see
// http://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability/index.html#system-calls
llvm::Value* EmitPrintf(absl::string_view fmt,
                        absl::Span<llvm::Value* const> arguments,
                        llvm::IRBuilder<>* builder) {
  std::vector<llvm::Type*> argument_types;
  for (auto argument : arguments) {
    argument_types.push_back(argument->getType());
  }
  auto* arguments_type = llvm::StructType::create(argument_types);
  llvm::Value* arguments_ptr = builder->CreateAlloca(arguments_type);
  for (size_t i = 0; i < arguments.size(); ++i) {
    builder->CreateStore(
        arguments[i],
        builder->CreateGEP(arguments_ptr,
                           {builder->getInt64(0), builder->getInt32(i)}));
  }
  return builder->CreateCall(
      builder->GetInsertBlock()->getParent()->getParent()->getOrInsertFunction(
          "vprintf",
          llvm::FunctionType::get(builder->getInt32Ty(),
                                  {builder->getInt8Ty()->getPointerTo(),
                                   arguments_type->getPointerTo()},
                                  /*isVarArg=*/false)),
      {builder->CreateGlobalStringPtr(llvm_ir::AsStringRef(fmt)),
       arguments_ptr});
}

llvm::Value* EmitFullWarpShuffleDown(llvm::Value* value, llvm::Value* offset,
                                     llvm::IRBuilder<>* builder) {
  int bit_width = value->getType()->getPrimitiveSizeInBits();
  llvm::Value* all_warps_mask = builder->getInt32(-1);

  // Special case for efficiency
  if (value->getType()->isFloatTy() && bit_width == 32) {
    return llvm_ir::EmitCallToIntrinsic(
        llvm::Intrinsic::nvvm_shfl_sync_down_f32,
        {all_warps_mask, value, offset, builder->getInt32(kWarpSize - 1)}, {},
        builder);
  }

  // We must split values wider than 32 bits as the "shfl" instruction operates
  // on 32-bit values.
  int num_segments = CeilOfRatio(bit_width, 32);
  llvm::Value* x = builder->CreateBitCast(
      builder->CreateZExt(
          builder->CreateBitCast(value, builder->getIntNTy(bit_width)),
          builder->getIntNTy(32 * num_segments)),
      llvm::VectorType::get(builder->getInt32Ty(), num_segments));
  for (int i = 0; i < num_segments; ++i) {
    x = builder->CreateInsertElement(
        x,
        llvm_ir::EmitCallToIntrinsic(
            llvm::Intrinsic::nvvm_shfl_sync_down_i32,
            {all_warps_mask, builder->CreateExtractElement(x, i), offset,
             builder->getInt32(kWarpSize - 1)},
            {}, builder),
        i);
  }
  return builder->CreateBitCast(
      builder->CreateTrunc(
          builder->CreateBitCast(x, builder->getIntNTy(32 * num_segments)),
          builder->getIntNTy(bit_width)),
      value->getType());
}

StatusOr<CudnnConvKind> GetCudnnConvKind(
    const HloCustomCallInstruction* instr) {
  absl::string_view target = instr->custom_call_target();
  if (target == kCudnnConvForwardCallTarget) {
    return CudnnConvKind::kForward;
  }
  if (target == kCudnnConvBackwardInputCallTarget) {
    return CudnnConvKind::kBackwardInput;
  }
  if (target == kCudnnConvBackwardFilterCallTarget) {
    return CudnnConvKind::kBackwardFilter;
  }
  if (target == kCudnnConvBiasActivationForwardCallTarget) {
    return CudnnConvKind::kForwardActivation;
  }
  return InternalError("Unexpected call target: %s", target);
}

string CudnnConvKindToString(CudnnConvKind kind) {
  switch (kind) {
    case CudnnConvKind::kForward:
      return "forward";
    case CudnnConvKind::kBackwardFilter:
      return "backward_filter";
    case CudnnConvKind::kBackwardInput:
      return "backward_input";
    case CudnnConvKind::kForwardActivation:
      return "forward with activation";
  }
}

}  // namespace gpu
}  // namespace xla