aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/gpu/gpu_layout_assignment.cc
blob: 1ffe85575040651b4ed74843b3d702e29f6bb219 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/gpu/gpu_layout_assignment.h"

#include <memory>

#include "tensorflow/compiler/xla/layout_util.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emission_utils.h"
#include "tensorflow/compiler/xla/service/gpu/stream_executor_util.h"
#include "tensorflow/compiler/xla/service/hlo_casting_utils.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_instructions.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/window_util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/core/errors.h"

namespace xla {
namespace gpu {

using se::dnn::DataLayout;
using se::dnn::FilterLayout;

// Returns (input, filter, output) layouts.
static std::tuple<DataLayout, FilterLayout, DataLayout>
HeuristicLayoutAssignment(const HloInstruction* instr,
                          se::StreamExecutor* stream_executor) {
  // DataLayout and FilterLayout uses weird enum names. Translations:
  //   N <=> Batch or Output
  //   C <=> Depth or Input
  //   H <=> Y
  //   W <=> X
  //
  // Therefore kOutputInputYX and kBatchDepthYX mean NCHW.
  //
  // If you have trouble keeping these straight, consider that all that matters
  // is the location of the channel dim: Is it major (NCHW), or minor (NHWC)?

  constexpr auto kAllNCHW =
      std::make_tuple(DataLayout::kBatchDepthYX, FilterLayout::kOutputInputYX,
                      DataLayout::kBatchDepthYX);
  constexpr auto kAllNHWC =
      std::make_tuple(DataLayout::kBatchYXDepth, FilterLayout::kOutputYXInput,
                      DataLayout::kBatchYXDepth);

  // If we're not Volta or not fp16, the decision is easy: Use NCHW.
  if (!(instr->operand(0)->shape().element_type() == xla::PrimitiveType::F16 &&
        IsVoltaOrLater(*stream_executor))) {
    return kAllNCHW;
  }

  VLOG(2) << "Using heuristic to figure out layouts for " << instr->ToString();

  // Empirically we've found with Volta and cudnn 7 that backward-input convs
  // with stride are significantly faster with NCHW layouts.
  //
  // We could have used a mixed layout combination, e.g. (NHWC, NCHW, NCHW),
  // which on paper gives good performance. However, there are two observations:
  // * a mixed layout combination is more cuDNN-bug prone, based on empirical
  //   envidence.
  // * we've also observed that for mixed layouts, cuDNN transposes data back
  //   and forth from a different layout combination. If we end up with
  //   transposes anyway, we prefer to have them in XLA, as they can be fused.
  // TODO(timshen): Figure out the exact condition. This may be achieved by
  // auto-tuning layouts offline.
  if (instr->custom_call_target() == kCudnnConvBackwardInputCallTarget &&
      window_util::HasStride(instr->window())) {
    return kAllNCHW;
  }

  // For other Volta f16 convolutions, use NHWC.
  return kAllNHWC;
}

// Adds layout constraints on the cudnn custom-call instruction. The layout
// constraints are represented in terms of minor_to_major fields of both
// operands and the output shape. Depending on the underlying algorithm, one of
// { NCHW, NHWC } ^ 3 = 8 different layout combinations may be chosen.
Status GpuLayoutAssignment::AddBackendConstraintsToDnnConvCustomCall(
    HloCustomCallInstruction* instr, LayoutConstraints* constraints) {
  Shape lhs_shape = instr->operand(0)->shape();
  Shape rhs_shape = instr->operand(1)->shape();
  Shape result_shape = instr->shape().tuple_shapes(0);

  Shape* input_shape;
  Shape* filter_shape;
  Shape* output_shape;

  TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(instr));
  switch (kind) {
    case CudnnConvKind::kForward:
    case CudnnConvKind::kForwardActivation:
      input_shape = &lhs_shape;
      filter_shape = &rhs_shape;
      output_shape = &result_shape;
      break;
    case CudnnConvKind::kBackwardInput:
      input_shape = &result_shape;
      filter_shape = &rhs_shape;
      output_shape = &lhs_shape;
      break;
    case CudnnConvKind::kBackwardFilter:
      input_shape = &lhs_shape;
      filter_shape = &result_shape;
      output_shape = &rhs_shape;
      break;
  }

  {
    DataLayout input;
    FilterLayout filter;
    DataLayout output;
    std::tie(input, filter, output) =
        HeuristicLayoutAssignment(instr, stream_executor_);

    TF_ASSIGN_OR_RETURN(
        std::tie(*input_shape->mutable_layout(),
                 *filter_shape->mutable_layout(),
                 *output_shape->mutable_layout()),
        StreamExecutorConvLayoutsToXlaLayouts(
            instr->convolution_dimension_numbers(), input, filter, output));
  }

  // The custom call returns a tuple of (actual_result, scratch_buffer);
  // call_result_buf is the logical buffer for actual_result, the thing that
  // contains the result of the conv call.
  TF_ASSIGN_OR_RETURN(const LogicalBuffer* call_result_buf,
                      constraints->points_to_analysis().GetBufferDefinedAt(
                          instr, /*index=*/{0}));

  // Set layouts of the instructions' shapes.
  TF_RETURN_IF_ERROR(constraints->SetOperandLayout(lhs_shape, instr, 0));
  TF_RETURN_IF_ERROR(constraints->SetOperandLayout(rhs_shape, instr, 1));
  TF_RETURN_IF_ERROR(
      constraints->SetBufferLayout(result_shape.layout(), *call_result_buf));
  // instr->operand(2), if exists, is the bias buffer. There is no need to
  // assign layout to it, as it has only one dimension.

  // instr->opernad(3), if exists, is the side input buffer.
  if (instr->operand_count() == 4) {
    if (kind != CudnnConvKind::kForwardActivation) {
      return InternalError(
          "Invalid convolution. Conv has a side input, but kind is not fused "
          "conv forward: %s",
          instr->ToString());
    }
    // The side input layout must match the output layout.
    TF_RETURN_IF_ERROR(constraints->SetOperandLayout(*output_shape, instr, 3));
  }
  return Status::OK();
}

Status GpuLayoutAssignment::AddBackendConstraints(
    LayoutConstraints* constraints) {
  // Add convolution constraints in reverse postorder that the earliest
  // convolution layout propagates first. This reduces the likelihood of fusion
  // nodes with copies.
  auto post_order = constraints->computation()->MakeInstructionPostOrder();
  for (auto iterator = post_order.rbegin(); iterator != post_order.rend();
       ++iterator) {
    HloInstruction* instruction = *iterator;
    if (IsCustomCallToDnnConvolution(*instruction)) {
      TF_RETURN_IF_ERROR(AddBackendConstraintsToDnnConvCustomCall(
          Cast<HloCustomCallInstruction>(instruction), constraints));
    }

    // For batched dot we require the default layout.
    // TODO(b/112111608): This is overly conservative, the only real restriction
    // is that batch dimensions must be major.
    if (instruction->opcode() == HloOpcode::kDot &&
        ImplementedAsGemm(*instruction) &&
        instruction->dot_dimension_numbers().lhs_batch_dimensions_size() > 0) {
      // Verify that the batch dims come before the row and col dims.
      const DotDimensionNumbers& dim_nums =
          instruction->dot_dimension_numbers();
      CHECK_EQ(dim_nums.lhs_batch_dimensions_size(),
               dim_nums.rhs_batch_dimensions_size());
      CHECK_EQ(dim_nums.lhs_batch_dimensions_size() + 2,
               ShapeUtil::Rank(instruction->shape()));
      for (int64 batch_dim : dim_nums.lhs_batch_dimensions()) {
        CHECK_LT(batch_dim, ShapeUtil::Rank(instruction->shape()) - 2);
      }

      // Set both inputs and the output to default layout.
      Shape op0_shape = instruction->operand(0)->shape();
      LayoutUtil::SetToDefaultLayout(&op0_shape);
      Shape op1_shape = instruction->operand(1)->shape();
      LayoutUtil::SetToDefaultLayout(&op1_shape);
      Shape output_shape = instruction->shape();
      LayoutUtil::SetToDefaultLayout(&output_shape);
      TF_RETURN_IF_ERROR(
          constraints->SetOperandLayout(op0_shape, instruction, 0));
      TF_RETURN_IF_ERROR(
          constraints->SetOperandLayout(op1_shape, instruction, 1));
      TF_RETURN_IF_ERROR(
          constraints->SetInstructionLayout(output_shape, instruction));
    }
  }
  return Status::OK();
}

bool GpuLayoutAssignment::CustomCallRequiresMajorFirstLayout(
    const HloInstruction* instruction) {
  // - Inputs to cudnn batchnorm custom calls don't need the major-first layout
  //   (i.e. {n, n-1, ...0}) -- we can handle any layout.
  // - Inputs to cudnn convolution require custom layouts handled in
  //   AddBackendConstraints.
  return !IsCustomCallToDnnBatchNorm(*instruction) &&
         !IsCustomCallToDnnConvolution(*instruction);
}

Status GpuLayoutAssignment::PropagateOperandConstraint(
    const OperandLayoutConstraint& layout_constraint,
    LayoutConstraints* constraints) {
  const HloInstruction* instruction = layout_constraint.instruction();

  // cudnn batchnorm forward inference's result must have the same layout as its
  // operand 0.
  if (instruction->opcode() == HloOpcode::kCustomCall &&
      instruction->custom_call_target() ==
          kCudnnBatchNormForwardInferenceCallTarget &&
      layout_constraint.operand_no() == 0) {
    TF_RETURN_IF_ERROR(constraints->SetInstructionLayout(
        layout_constraint.shape_layout().shape(), instruction));
  }

  // cudnn batchnorm forward training returns a tuple {output, mean,
  // inverse-stddev}.  mean and inverse-stddev are rank 1 and so have only one
  // possible layout, but output is not (necessarily) rank 1, and, like in
  // batchnorm forward inference, must have the same layout as operand 0.
  if (instruction->opcode() == HloOpcode::kCustomCall &&
      instruction->custom_call_target() ==
          kCudnnBatchNormForwardTrainingCallTarget &&
      layout_constraint.operand_no() == 0) {
    TF_ASSIGN_OR_RETURN(const LogicalBuffer* out_buf,
                        constraints->points_to_analysis().GetBufferDefinedAt(
                            instruction, /*index=*/{0}));
    TF_RETURN_IF_ERROR(constraints->SetBufferLayout(
        layout_constraint.shape_layout().layout(), *out_buf));
  }

  // Like forward training, cudnn batchnorm backward returns a tuple {output,
  // mean, inverse-stddev}, and its operand 0 and 'output' must have the same
  // layout.  In addition, its operand 0 and operand 4 -- the 'operand' and
  // 'grad_output' parameters -- must have the same layout.
  if (instruction->opcode() == HloOpcode::kCustomCall &&
      instruction->custom_call_target() == kCudnnBatchNormBackwardCallTarget &&
      (layout_constraint.operand_no() == 0 ||
       layout_constraint.operand_no() == 4)) {
    TF_ASSIGN_OR_RETURN(const LogicalBuffer* out_buf,
                        constraints->points_to_analysis().GetBufferDefinedAt(
                            instruction, /*index=*/{0}));
    TF_RETURN_IF_ERROR(constraints->SetBufferLayout(
        layout_constraint.shape_layout().layout(), *out_buf));

    int64 operand_to_set = layout_constraint.operand_no() == 0 ? 4 : 0;
    TF_RETURN_IF_ERROR(constraints->SetOperandLayout(
        layout_constraint.shape_layout().shape(), instruction, operand_to_set));
  }

  return LayoutAssignment::PropagateOperandConstraint(layout_constraint,
                                                      constraints);
}

Status GpuLayoutAssignment::PropagateBufferConstraint(
    const BufferLayoutConstraint& buffer_constraint,
    LayoutConstraints* constraints) {
  const LogicalBuffer& buf = buffer_constraint.buffer();
  const HloInstruction* instruction = buf.instruction();

  Shape shape_with_layout = buf.shape();
  *shape_with_layout.mutable_layout() = buffer_constraint.layout();

  // Propagate output constraints to the operands of cudnn batchnorm ops.  This
  // is the same as PropagateOperandConstraint, just in the other direction.  We
  // need to both to fulfill our contract to LayoutAssignment.
  if (instruction->opcode() == HloOpcode::kCustomCall &&
      instruction->custom_call_target() ==
          kCudnnBatchNormForwardInferenceCallTarget) {
    TF_RETURN_IF_ERROR(constraints->SetOperandLayout(
        shape_with_layout, instruction, /*operand_no=*/0));
  }

  if (instruction->opcode() == HloOpcode::kCustomCall &&
      instruction->custom_call_target() ==
          kCudnnBatchNormForwardTrainingCallTarget &&
      buf.index() == ShapeIndex({0})) {
    TF_RETURN_IF_ERROR(constraints->SetOperandLayout(
        shape_with_layout, instruction, /*operand_no=*/0));
  }
  if (instruction->opcode() == HloOpcode::kCustomCall &&
      instruction->custom_call_target() == kCudnnBatchNormBackwardCallTarget &&
      buf.index() == ShapeIndex({0})) {
    // batchnorm backward has two operands, "operand" and "grad_output" whose
    // layouts must both match that of the result at tuple-index 0.
    TF_RETURN_IF_ERROR(constraints->SetOperandLayout(
        shape_with_layout, instruction, /*operand_no=*/0));
    TF_RETURN_IF_ERROR(constraints->SetOperandLayout(
        shape_with_layout, instruction, /*operand_no=*/4));
  }

  return LayoutAssignment::PropagateBufferConstraint(buffer_constraint,
                                                     constraints);
}

}  // namespace gpu
}  // namespace xla