aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/gpu/gpu_hlo_schedule.cc
blob: 02a0d028c118aba23996f9b97d05443bb4a00c88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <deque>
#include <memory>
#include <unordered_map>

#include "tensorflow/compiler/xla/service/gpu/gpu_hlo_schedule.h"

#include "absl/memory/memory.h"
#include "tensorflow/compiler/xla/service/buffer_value.h"
#include "tensorflow/compiler/xla/service/hlo_memory_scheduler.h"
#include "tensorflow/compiler/xla/service/hlo_reachability.h"
#include "tensorflow/compiler/xla/service/hlo_schedule.h"
#include "tensorflow/compiler/xla/types.h"

namespace xla {
namespace gpu {

namespace {

// An HLO partial ordering based on the actual stream assignment and thunk
// launch order.
class GpuHloOrdering : public PredecessorHloOrdering {
 public:
  GpuHloOrdering(const HloModule* module,
                 const StreamAssignment& stream_assignment,
                 const std::vector<const HloInstruction*>& thunk_launch_order);
  ~GpuHloOrdering() override = default;

  // Only the entry computation can possibly be sequentially ordered, and only
  // if we've assigned all instructions to a single stream.
  const std::vector<const HloInstruction*>* SequentialOrder(
      const HloComputation& computation) const override {
    return &computation == module_->entry_computation() ? entry_sequence_.get()
                                                        : nullptr;
  }

  string ToString() const override { return ToStringHelper("GpuHloOrdering"); }

 private:
  std::unique_ptr<std::vector<const HloInstruction*>> entry_sequence_;
};

GpuHloOrdering::GpuHloOrdering(
    const HloModule* module, const StreamAssignment& stream_assignment,
    const std::vector<const HloInstruction*>& thunk_launch_order)
    : PredecessorHloOrdering(module) {
  // The entry computation has a total order when there's only one stream.
  if (stream_assignment.StreamCount() == 1) {
    entry_sequence_ = absl::make_unique<std::vector<const HloInstruction*>>(
        thunk_launch_order);
  }

  // The ordering of instructions for the entry computation is determined by the
  // total order of thunk launches, and stream assignment. Instructions are
  // sequential within a stream and concurrent across streams. In addition, the
  // GpuExecutable adds cross-stream dependency edges to ensure each instruction
  // waits for its operands before executing.
  //
  // The predecessor map is built incrementally, in thunk launch order. We
  // record the most-recently seen instructions per stream in
  // 'last_instruction_per_stream'. This lets us quickly determine the
  // same-stream predecessors of each instruction.

  // Compute the set of all instructions we will want to set reachability on.
  auto predecessor_map = absl::make_unique<HloReachabilityMap>(
      module->entry_computation()->MakeInstructionPostOrder());

  // The most recently visited instruction per stream.
  std::vector<const HloInstruction*> last_instruction_per_stream(
      stream_assignment.StreamCount(), nullptr);

  for (const HloInstruction* hlo : thunk_launch_order) {
    predecessor_map->SetReachable(hlo, hlo);
    if (stream_assignment.HasStreamAssigned(*hlo)) {
      // Gather all instruction which are immediate predecessors of 'hlo' in the
      // reachability graph.
      std::vector<const HloInstruction*> immediate_preds;
      immediate_preds.insert(immediate_preds.end(), hlo->operands().begin(),
                             hlo->operands().end());
      immediate_preds.insert(immediate_preds.end(),
                             hlo->control_predecessors().begin(),
                             hlo->control_predecessors().end());

      // All ops already queued on the same instruction stream, and their
      // transitive predecessors, are predecessors.
      const int stream_no = stream_assignment.StreamNumberForHlo(*hlo);
      if (last_instruction_per_stream[stream_no] != nullptr) {
        immediate_preds.push_back(last_instruction_per_stream[stream_no]);
      }
      predecessor_map->FastSetReachabilityToUnion(immediate_preds, hlo);
      last_instruction_per_stream[stream_no] = hlo;
    } else {
      // Only parameters and constants don't have an assigned stream, since they
      // don't require a thunk. These ops don't have any predecessors.
      CHECK(hlo->opcode() == HloOpcode::kParameter ||
            hlo->opcode() == HloOpcode::kConstant);
      CHECK_EQ(hlo->operand_count(), 0);
    }
  }
  predecessors_.emplace(module->entry_computation(),
                        std::move(predecessor_map));

  // The ordering of instructions in subcomputations is based solely on control
  // and data dependencies.
  //
  // TODO(toddw): Each subcomputation is actually emitted as a function in DFS
  // postorder, so we can do better and establish the total order here. We don't
  // do that yet since it's hard to ensure that the order here is the order used
  // by IrEmitterNested. And mismatched ordering bugs would be hard to find.
  for (auto* computation : module->computations()) {
    if (computation != module->entry_computation() &&
        !computation->IsFusionComputation()) {
      predecessors_.emplace(computation, computation->ComputeReachability());
    }
  }
}

// Computes a topological launch_order that is close to a breadth-first
// order. This heuristic works well for graphs where concurrent kernels are
// located at the same layer. It can often reduce dependency between concurrent
// GEMMs due to intra-stream total orders.  E.g. consider the following HLO
// graph where the numbers in the parens indicate the stream assigned to each
// HLO.
//
//   A(0) -> D(0) -> E(1)
//    |
//    v
//   B(0)
//    |
//    v
//   C(0)
//
// If the total order is A,B,C,D,E, then C and E would be sequentialized
// because C completes before D starts in stream 0, and E depends on D.
// However, if the total order is A,B,D,C,E, then C and E can run
// concurrently.
void BFSLaunchOrder(const HloComputation* computation,
                    std::vector<const HloInstruction*>* launch_order) {
  // This topological sort uses two data structures:
  // 1. `incoming_edge_count` which keeps track of the number of incoming
  // edges to each HLO;
  // 2. `queue` which contains all HLOs with no incoming edges.
  //
  // The sorting algorithm repeatedly pops the top from the queue and deletes
  // that HLO from the graph, making more HLOs incoming-edge free.
  std::deque<const HloInstruction*> queue;
  std::unordered_map<const HloInstruction*, int64> incoming_edge_count;
  for (const auto& hlo : computation->instructions()) {
    if (hlo->operand_count() == 0) {
      queue.push_back(hlo);
    } else {
      incoming_edge_count[hlo] =
          std::set<HloInstruction*>(hlo->operands().begin(),
                                    hlo->operands().end())
              .size();
    }
  }

  while (!queue.empty()) {
    const HloInstruction* x = queue.front();
    queue.pop_front();
    launch_order->push_back(x);
    for (const HloInstruction* y : x->users()) {
      --incoming_edge_count[y];
      if (incoming_edge_count[y] == 0) {
        queue.push_back(y);
      }
    }
  }
}

}  // end namespace

GpuHloSchedule::GpuHloSchedule() {}

/* static */
StatusOr<std::unique_ptr<GpuHloSchedule>> GpuHloSchedule::Build(
    const HloModule& module, const StreamAssignment& stream_assignment,
    int64 pointer_size) {
  std::unique_ptr<GpuHloSchedule> schedule(new GpuHloSchedule);

  // Initialize thunk_launch_order_, the total order of thunk launches.
  const HloComputation* entry_computation = module.entry_computation();
  if (stream_assignment.StreamCount() == 1) {
    // All kernels are launched on a single stream, so there's no loss of
    // concurrency by optimizing for minimal memory usage.
    TF_ASSIGN_OR_RETURN(
        HloInstructionSequence sequence,
        ScheduleComputation(
            *entry_computation, [pointer_size](const BufferValue& buffer) {
              return ShapeUtil::ByteSizeOf(buffer.shape(), pointer_size);
            }));
    schedule->thunk_launch_order_ = sequence.instructions();
  } else {
    // BFS tends to increase concurrency, but also increases memory usage.
    BFSLaunchOrder(entry_computation, &schedule->thunk_launch_order_);
  }

  schedule->hlo_ordering_ = absl::make_unique<GpuHloOrdering>(
      &module, stream_assignment, schedule->thunk_launch_order_);

  return std::move(schedule);
}

}  // namespace gpu
}  // namespace xla