aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/gpu/gpu_executable.cc
blob: 57426327822d95a42f407ed7488f35acfd3623d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/gpu/gpu_executable.h"

#include <set>
#include <utility>
#include <vector>

#include "absl/container/flat_hash_map.h"
#include "absl/memory/memory.h"
#include "tensorflow/compiler/xla/map_util.h"
#include "tensorflow/compiler/xla/service/gpu/buffer_allocations.h"
#include "tensorflow/compiler/xla/service/gpu/hlo_execution_profiler.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/llvm_ir/buffer_assignment_util.h"
#include "tensorflow/compiler/xla/service/logical_buffer.h"
#include "tensorflow/compiler/xla/service/shaped_buffer.h"
#include "tensorflow/compiler/xla/service/transfer_manager.h"
#include "tensorflow/compiler/xla/shape_tree.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/tracing.h"
#include "tensorflow/core/platform/types.h"

namespace xla {
namespace gpu {
namespace {

using tensorflow::tracing::ScopedAnnotation;

}  // namespace

// Implementation note: HLO profiling is always enabled for GPU executables,
// since we can use timers around thunks.
GpuExecutable::GpuExecutable(
    const string& ptx, const std::vector<uint8>& cubin,
    std::pair<int, int> compute_capability,
    std::unique_ptr<const ThunkSchedule> thunk_schedule,
    std::unique_ptr<const HloModule> hlo_module,
    std::unique_ptr<const BufferAssignment> assignment,
    std::unique_ptr<HloProfilePrinterData> hlo_profile_printer_data,
    std::unique_ptr<HloProfileIndexMap> hlo_profile_index_map)
    : Executable(std::move(hlo_module), std::move(hlo_profile_printer_data),
                 std::move(hlo_profile_index_map)),
      ptx_(ptx),
      cubin_(cubin),
      compute_capability_(compute_capability),
      thunk_schedule_(std::move(thunk_schedule)),
      assignment_(std::move(assignment)) {}

Status GpuExecutable::ExecuteThunks(
    const ServiceExecutableRunOptions* run_options,
    const BufferAllocations& buffer_allocations, bool block_host_until_done,
    HloExecutionProfile* hlo_execution_profile) {
  se::Stream* main_stream = run_options->stream();
  se::StreamExecutor* executor = main_stream->parent();

  std::pair<int, int> stream_compute_compatibility;
  executor->GetDeviceDescription().cuda_compute_capability(
      &stream_compute_compatibility.first,
      &stream_compute_compatibility.second);
  TF_RET_CHECK(stream_compute_compatibility == compute_capability_)
      << "Compute capability mismatch; expected {" << compute_capability_.first
      << ", " << compute_capability_.second << "}, but was {"
      << stream_compute_compatibility.first << ", "
      << stream_compute_compatibility.second << "}";

  bool do_profile = hlo_execution_profile != nullptr;
  if (do_profile) {
    LOG(WARNING) << "PROFILING: profiling is enabled";
  }

  // Stream 0 indicates `main_stream` and substreams start from stream 1.
  std::vector<StreamPool::Ptr> sub_streams;
  sub_streams.reserve(thunk_schedule_->StreamCount() - 1);
  while (sub_streams.size() + 1 < thunk_schedule_->StreamCount()) {
    sub_streams.emplace_back();
    TF_ASSIGN_OR_RETURN(sub_streams.back(),
                        run_options->BorrowStream(executor->device_ordinal()));
  }

  HloExecutionProfiler profiler(do_profile, hlo_execution_profile, main_stream,
                                sub_streams, hlo_module_->entry_computation());
  uint64 start_micros = tensorflow::Env::Default()->NowMicros();

  // This top-level trace serves two purposes:
  //  1) It marks the scope of the whole XLA module.
  //  2) It tells us whether tracing is enabled.  We use this to avoid the
  //     expensive HloInstruction::ToString() calls inside the loop below if
  //     tracing is disabled.
  ScopedAnnotation top_level_annotation(hlo_module_->name(), "XLA GPU module");

  std::map<const Thunk*, std::unique_ptr<se::Event>> thunk_to_finish_event;
  for (Thunk* thunk : thunk_schedule_->TotalOrder()) {
    // Annotate execution of this op if tracing was enabled when we started
    // running this module.  If tracing is enabled *while* we're running the
    // module, we won't get any data, but that's probably an OK trade-off.
    //
    // TODO(jlebar): Should we cache the results of HloInstruction::ToString(),
    // since we expect it to be an expensive call?
    absl::optional<ScopedAnnotation> op_annotation;
    if (top_level_annotation.IsEnabled()) {
      op_annotation.emplace(
          thunk->hlo_instruction() != nullptr
              ? thunk->hlo_instruction()->ToString(HloPrintOptions::Canonical())
              : "<unknown>",
          "XLA op");
    }

    TF_RETURN_IF_ERROR(thunk->Initialize(*this, executor));
    int32 stream_no =
        thunk_schedule_->StreamNumberForHlo(*thunk->hlo_instruction());
    se::Stream* stream =
        (stream_no == 0 ? main_stream : sub_streams[stream_no - 1].get());

    for (const Thunk* dependency : thunk_schedule_->DependsOn(thunk)) {
      stream->ThenWaitFor(FindOrDie(thunk_to_finish_event, dependency).get());
    }

    // If this thunk is about to autotune then wait for all currently executing
    // thunks to finish.  This reduces noise and thus the probability of
    // choosing a suboptimal algorithm.
    if (thunk->WillAutotuneKernel(stream)) {
      TF_RETURN_IF_ERROR(main_stream->BlockHostUntilDone());
    }

    VLOG(2) << "Executing the thunk for "
            << thunk->hlo_instruction()->ToString() << " on stream "
            << stream_no;
    TF_RETURN_IF_ERROR(
        thunk->ExecuteOnStream(buffer_allocations, stream, &profiler));
    if (thunk_schedule_->Depended(thunk)) {
      auto finish_event = absl::make_unique<se::Event>(main_stream->parent());
      finish_event->Init();
      stream->ThenRecordEvent(finish_event.get());
      thunk_to_finish_event[thunk] = std::move(finish_event);
    }
  }

  main_stream->ThenWaitFor(&sub_streams);
  // Make sure kernels are completed before deallocating temporary buffers.
  // TODO(b/30100571): we could potentially postpone deallocating the temp
  // buffers until a different computation is executed.
  if (block_host_until_done) {
    Status block_status = main_stream->BlockHostUntilDone();
    if (!block_status.ok()) {
      return InternalError(
          "Failed to complete all kernels launched on stream %p: %s",
          main_stream, block_status.error_message());
    }
  }

  profiler.FinishExecution();
  uint64 end_micros = tensorflow::Env::Default()->NowMicros();

  {
    tensorflow::mutex_lock lock(mutex_);
    const double nanoseconds = (end_micros - start_micros) * 1000.0;
    execution_profile_.set_compute_time_ns(std::max(nanoseconds, 1.0));

    // If hlo profiling was disabled then the cycle count is left empty.
    if (do_profile) {
      execution_profile_.set_compute_cycle_count(
          hlo_execution_profile->total_cycles_executed(
              *module().entry_computation()));
    }
  }

  return Status::OK();
}

StatusOr<const GpuExecutable::BufferAllocToDeviceMemoryMap*>
GpuExecutable::ResolveConstantGlobals(se::StreamExecutor* executor) {
  tensorflow::mutex_lock lock(module_handle_mutex_);
  auto it = module_globals_.find(executor);
  if (it != module_globals_.end()) {
    return &it->second;
  }

  se::MultiModuleLoaderSpec module_spec;
  if (!cubin().empty()) {
    module_spec.AddCudaCubinInMemory(cubin());
  }
  module_spec.AddCudaPtxInMemory(ptx().c_str());

  absl::flat_hash_map<int64, se::DeviceMemoryBase> globals;
  se::ModuleHandle module_handle;
  executor->LoadModule(module_spec, &module_handle);

  for (BufferAllocation::Index i = 0; i < assignment_->Allocations().size();
       ++i) {
    const BufferAllocation& allocation = assignment_->GetAllocation(i);
    if (allocation.is_constant()) {
      TF_ASSIGN_OR_RETURN(
          se::DeviceMemoryBase global,
          executor->GetUntypedSymbol(
              llvm_ir::ConstantBufferAllocationToGlobalName(allocation),
              module_handle));
      VLOG(3) << "Resolved global "
              << llvm_ir::ConstantBufferAllocationToGlobalName(allocation)
              << " to " << global.opaque();
      InsertOrDie(&globals, i, global);

      const Literal& literal =
          llvm_ir::LiteralForConstantAllocation(allocation);
      CHECK(ShapeUtil::IsArray(literal.shape()));
      if (!ShouldEmitLiteralInLlvmIr(literal)) {
        VLOG(3) << "H2D memcpy for constant with shape "
                << ShapeUtil::HumanString(literal.shape());
        TF_RETURN_IF_ERROR(executor->SynchronousMemcpyH2D(
            literal.untyped_data(), allocation.size(), &global));
      }
    }
  }

  module_handles_.emplace(executor,
                          se::ScopedModuleHandle(executor, module_handle));
  return &module_globals_.emplace(executor, std::move(globals)).first->second;
}

StatusOr<ScopedShapedBuffer> GpuExecutable::ExecuteOnStream(
    const ServiceExecutableRunOptions* run_options,
    absl::Span<const ShapedBuffer* const> arguments,
    HloExecutionProfile* hlo_execution_profile) {
  DeviceMemoryAllocator* memory_allocator = run_options->allocator();

  if (GetRootPointsToSet().IsAmbiguous()) {
    return Unimplemented("Points-to set of root instruction is ambiguous");
  }

  BufferAllocations::Builder buffer_allocations_builder;
  se::StreamExecutor* executor = run_options->stream()->parent();

  TF_ASSIGN_OR_RETURN(auto* const globals, ResolveConstantGlobals(executor));

  for (BufferAllocation::Index i = 0; i < assignment_->Allocations().size();
       ++i) {
    const BufferAllocation& allocation = assignment_->GetAllocation(i);
    if (allocation.is_entry_computation_parameter()) {
      auto param_no = allocation.parameter_number();
      se::DeviceMemoryBase buffer =
          arguments[param_no]->buffer(allocation.param_shape_index());

      // All top-level buffers and sub-buffers must have an explicit, non-null
      // pointer, except for zero-sized buffers, which may be null.
      if (buffer.is_null() && buffer.size() > 0) {
        return FailedPrecondition(
            "Cannot run XLA computation because pointer to (sub-)buffer at "
            "index %s of parameter %d was null.  All pointers to (sub-)buffers "
            "must not be null, unless the (sub-)buffer has zero elements.",
            allocation.param_shape_index().ToString(), param_no);
      }

      buffer_allocations_builder.RegisterBuffer(i, buffer);
    }

    if (allocation.is_constant()) {
      buffer_allocations_builder.RegisterBuffer(i, FindOrDie(*globals, i));
    }
  }

  TF_ASSIGN_OR_RETURN(
      auto buffer_allocations,
      buffer_allocations_builder.Build(
          assignment_.get(), executor->device_ordinal(), memory_allocator));

  bool block_host_until_done =
      !memory_allocator->AllowsAsynchronousDeallocation();
  TF_RETURN_IF_ERROR(ExecuteThunks(run_options, *buffer_allocations,
                                   block_host_until_done,
                                   hlo_execution_profile));

  HloInstruction* root = hlo_module_->entry_computation()->root_instruction();
  auto device_ordinal = executor->device_ordinal();
  ScopedShapedBuffer shaped_buffer(root->shape(), root->shape(),
                                   memory_allocator, device_ordinal);

  // Copy DeviceMemoryBase values which contain the array(s) of the result into
  // the respective location in ShapedBuffer.
  std::set<se::DeviceMemoryBase> buffers_in_result;
  TF_RETURN_IF_ERROR(shaped_buffer.buffers().ForEachMutableElementWithStatus(
      [&buffer_allocations, &buffers_in_result, this](
          const ShapeIndex& index, se::DeviceMemoryBase* device_memory) {
        const auto& sources = this->GetRootPointsToSet().element(index);
        // The points-to set is unambiguous so the set should be a
        // singleton. That is, we know exactly which instruction
        // produced the array at this element.
        CHECK_EQ(1, sources.size());
        auto src_hlo = sources[0]->instruction();

        VLOG(4) << "Looking at: " << sources[0];

        // The source instruction should have a non-parameter buffer
        // assigned.
        TF_ASSIGN_OR_RETURN(
            const BufferAllocation::Slice slice,
            this->assignment_->GetUniqueSlice(src_hlo, sources[0]->index()));
        CHECK(!slice.allocation()->is_entry_computation_parameter());

        se::DeviceMemoryBase src_base =
            buffer_allocations->GetDeviceAddress(slice.index());
        CHECK(!src_base.is_null() || src_base.size() == 0);
        *device_memory = src_base;
        buffers_in_result.insert(src_base);
        return Status::OK();
      }));
  TF_RETURN_IF_ERROR(buffer_allocations->TearDown(buffers_in_result));

  return std::move(shaped_buffer);
}

StatusOr<ScopedShapedBuffer> GpuExecutable::ExecuteAsyncOnStream(
    const ServiceExecutableRunOptions* run_options,
    absl::Span<const ShapedBuffer* const> arguments) {
  // TODO(b/30671675): Implement asynchronous execution mode.
  return Unimplemented(
      "Asynchronous execution on stream is not yet supported on GPU.");
}

const PointsToSet& GpuExecutable::GetRootPointsToSet() const {
  return assignment_->points_to_analysis().GetPointsToSet(
      module().entry_computation()->root_instruction());
}

}  // namespace gpu
}  // namespace xla