aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/gpu/gpu_executable.cc
blob: 0fd85e4fb057f144df93d53485570d67c66af0d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/gpu/gpu_executable.h"

#include <set>
#include <utility>
#include <vector>

#include "tensorflow/compiler/xla/map_util.h"
#include "tensorflow/compiler/xla/ptr_util.h"
#include "tensorflow/compiler/xla/service/gpu/buffer_allocations.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/logical_buffer.h"
#include "tensorflow/compiler/xla/service/shaped_buffer.h"
#include "tensorflow/compiler/xla/service/transfer_manager.h"
#include "tensorflow/compiler/xla/shape_tree.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"

namespace se = ::perftools::gputools;

namespace xla {
namespace gpu {
namespace {

// A helper class for profiling HLO in the course of GPU program execution.
// All of the profiling is guarded internally, to avoid the caller needing to
// have lots of conditionals sprinkled around.
class HloExecutionProfiler {
 public:
  // If profiling is enabled, start an execution timer running.
  explicit HloExecutionProfiler(bool do_profile, HloExecutionProfile* profile,
                                se::Stream* stream,
                                const HloComputation* computation)
      : do_profile_(do_profile),
        profile_(profile),
        stream_(stream),
        computation_(computation) {
    if (do_profile_) {
      clock_rate_ghz_ =
          stream->parent()->GetDeviceDescription().clock_rate_ghz();
      execution_timer_.reset(new se::Timer(stream->parent()));
      per_op_timer_.reset(new se::Timer(stream->parent()));
      stream->InitTimer(execution_timer_.get())
          .ThenStartTimer(execution_timer_.get());
      stream->InitTimer(per_op_timer_.get());
    }
  }

  // If profiling is enabled, sets the total cycle count on the profile from the
  // execution timer.
  ~HloExecutionProfiler() {
    if (do_profile_) {
      stream_->ThenStopTimer(execution_timer_.get());
      stream_->BlockHostUntilDone();
      profile_->set_total_cycles_executed(
          *computation_, execution_timer_->Nanoseconds() * clock_rate_ghz_);
    }
  }

  // If profiling is enabled, starts the per-operation timer.
  void StartOperation() {
    if (do_profile_) {
      stream_->ThenStartTimer(per_op_timer_.get());
    }
  }

  // If profiling is enabled, stops the per-operation timer and records the time
  // that the hlo_instruction took to execute in the profile.
  void FinishOperation(const HloInstruction* hlo_instruction) {
    if (do_profile_) {
      stream_->ThenStopTimer(per_op_timer_.get());
      stream_->BlockHostUntilDone();
      profile_->SetCyclesTakenBy(
          hlo_instruction, per_op_timer_->Nanoseconds() * clock_rate_ghz_);
    }
  }

 private:
  const bool do_profile_;
  double clock_rate_ghz_;
  HloExecutionProfile* profile_;
  se::Stream* stream_;
  const HloComputation* computation_;
  std::unique_ptr<se::Timer> execution_timer_;
  std::unique_ptr<se::Timer> per_op_timer_;
};

}  // namespace

// Implementation note: HLO profiling is always enabled for GPU executables,
// since we can use timers around thunks.
GpuExecutable::GpuExecutable(
    const string& ptx, const std::vector<uint8>& cubin,
    std::pair<int, int> compute_capability,
    std::unique_ptr<const ThunkSchedule> thunk_schedule,
    std::unique_ptr<const HloModule> hlo_module,
    std::unique_ptr<const BufferAssignment> assignment,
    std::unique_ptr<HloProfilePrinter> hlo_profile_printer,
    std::unique_ptr<HloProfileIndexMap> hlo_profile_index_map)
    : Executable(std::move(hlo_module), std::move(hlo_profile_printer),
                 std::move(hlo_profile_index_map)),
      ptx_(ptx),
      cubin_(cubin),
      compute_capability_(compute_capability),
      thunk_schedule_(std::move(thunk_schedule)),
      assignment_(std::move(assignment)) {}

Status GpuExecutable::ExecuteThunks(
    const ServiceExecutableRunOptions* run_options,
    const BufferAllocations& buffer_allocations, bool block_host_until_done,
    HloExecutionProfile* hlo_execution_profile) {
  se::Stream* main_stream = run_options->stream();

  std::pair<int, int> stream_compute_compatibility;
  main_stream->parent()->GetDeviceDescription().cuda_compute_capability(
      &stream_compute_compatibility.first,
      &stream_compute_compatibility.second);
  TF_RET_CHECK(stream_compute_compatibility == compute_capability_)
      << "Compute capability mismatch; expected {" << compute_capability_.first
      << ", " << compute_capability_.second << "}, but was {"
      << stream_compute_compatibility.first << ", "
      << stream_compute_compatibility.second << "}";

  bool do_profile = hlo_execution_profile != nullptr;
  if (do_profile) {
    LOG(WARNING) << "PROFILING: profiling is enabled";
  }
  HloExecutionProfiler profiler(do_profile, hlo_execution_profile, main_stream,
                                hlo_module_->entry_computation());

  // Stream 0 indicates `main_stream` and substreams start from stream 1.
  std::vector<Pool<se::Stream>::SmartPtr> sub_streams;
  while (sub_streams.size() + 1 < thunk_schedule_->StreamCount()) {
    sub_streams.emplace_back();
    TF_ASSIGN_OR_RETURN(
        sub_streams.back(),
        run_options->BorrowStream(main_stream->parent()->device_ordinal()));
  }

  std::map<const Thunk*, std::unique_ptr<se::Event>> thunk_to_finish_event;
  for (Thunk* thunk : thunk_schedule_->TotalOrder()) {
    TF_RETURN_IF_ERROR(thunk->Initialize(*this));
    int32 stream_no =
        thunk_schedule_->StreamNumberForHlo(*thunk->hlo_instruction());
    se::Stream* stream =
        (stream_no == 0 ? main_stream : sub_streams[stream_no - 1].get());

    for (const Thunk* dependency : thunk_schedule_->DependsOn(thunk)) {
      stream->ThenWaitFor(FindOrDie(thunk_to_finish_event, dependency).get());
    }

    profiler.StartOperation();
    VLOG(2) << "Executing the thunk for "
            << thunk->hlo_instruction()->ToString();
    TF_RETURN_IF_ERROR(thunk->ExecuteOnStream(buffer_allocations, stream));
    if (thunk_schedule_->Depended(thunk)) {
      auto finish_event = MakeUnique<se::Event>(main_stream->parent());
      finish_event->Init();
      stream->ThenRecordEvent(finish_event.get());
      thunk_to_finish_event[thunk] = std::move(finish_event);
    }
    profiler.FinishOperation(thunk->hlo_instruction());
  }

  main_stream->ThenWaitFor(&sub_streams);
  // Make sure kernels are completed before deallocating temporary buffers.
  // TODO(b/30100571): we could potentially postpone deallocating the temp
  // buffers until a different computation is executed.
  if (block_host_until_done && !main_stream->BlockHostUntilDone()) {
    return InternalError("Failed to complete all kernels launched on stream %p",
                         main_stream);
  }

  return Status::OK();
}

StatusOr<se::DeviceMemoryBase> GpuExecutable::ExecuteOnStream(
    const ServiceExecutableRunOptions* run_options,
    tensorflow::gtl::ArraySlice<se::DeviceMemoryBase> arguments,
    HloExecutionProfile* hlo_execution_profile) {
  se::Stream* stream = run_options->stream();
  DeviceMemoryAllocator* memory_allocator = run_options->allocator();

  BufferAllocations::Builder buffer_allocations_builder;
  for (BufferAllocation::Index i = 0; i < assignment_->Allocations().size();
       ++i) {
    const BufferAllocation& allocation = assignment_->GetAllocation(i);
    if (allocation.is_entry_computation_parameter()) {
      buffer_allocations_builder.RegisterBuffer(
          i, arguments[allocation.parameter_number()]);
    }
  }
  se::StreamExecutor* executor = stream->parent();
  TF_ASSIGN_OR_RETURN(
      auto buffer_allocations,
      buffer_allocations_builder.Build(*assignment_, executor->device_ordinal(),
                                       memory_allocator));

  bool block_host_until_done =
      !memory_allocator->AllowsAsynchronousDeallocation();
  TF_RETURN_IF_ERROR(ExecuteThunks(run_options, *buffer_allocations,
                                   block_host_until_done,
                                   hlo_execution_profile));

  HloInstruction* root = hlo_module_->entry_computation()->root_instruction();
  TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice output_slice,
                      assignment_->GetUniqueTopLevelOutputSlice());
  se::DeviceMemoryBase output_buffer_address =
      buffer_allocations->GetDeviceAddress(output_slice.index());

  if (ShapeUtil::IsTuple(root->shape())) {
    std::set<se::DeviceMemoryBase> referred_by_output;
    if (GetRootPointsToSet().IsAmbiguous()) {
      // The points-to set of the root is ambiguous so we need to examine the
      // result data to determine which buffers are contained in the result.
      TF_ASSIGN_OR_RETURN(
          TransferManager * transfer_manager,
          TransferManager::GetForPlatform(executor->platform()));
      TF_ASSIGN_OR_RETURN(referred_by_output,
                          transfer_manager->GatherBufferPointersFromTuple(
                              executor, output_buffer_address, root->shape()));
    } else {
      // The points-to set of the root is unambiguous so it's known statically
      // which buffers are in the result. Gather these buffers using the root's
      // points-to set.
      TF_RETURN_IF_ERROR(GetRootPointsToSet().ForEachElementWithStatus(
          [&referred_by_output, &buffer_allocations, this](
              const ShapeIndex& /*index*/,
              const PointsToSet::BufferList& buffers) {
            // The points to set is unambiguous so the set should be a
            // singleton. That is, we know exactly which instruction produced
            // the array at this element.
            CHECK_EQ(1, buffers.size());
            HloInstruction* hlo = buffers[0]->instruction();
            TF_ASSIGN_OR_RETURN(
                const BufferAllocation::Slice slice,
                this->assignment_->GetUniqueSlice(hlo, buffers[0]->index()));
            CHECK(!slice.allocation()->is_entry_computation_parameter());
            referred_by_output.insert(
                buffer_allocations->GetDeviceAddress(slice.index()));
            return Status::OK();
          }));
    }
    TF_RETURN_IF_ERROR(
        buffer_allocations->TearDown(referred_by_output, *assignment_));
  } else {
    // If the computation result is not a tuple, we can delete all temporary
    // buffers that are not the output.
    TF_RETURN_IF_ERROR(
        buffer_allocations->TearDown({output_buffer_address}, *assignment_));
  }
  return output_buffer_address;
}

StatusOr<std::unique_ptr<ShapedBuffer>> GpuExecutable::ExecuteOnStream(
    const ServiceExecutableRunOptions* run_options,
    tensorflow::gtl::ArraySlice<const ShapedBuffer*> arguments,
    HloExecutionProfile* hlo_execution_profile) {
  DeviceMemoryAllocator* memory_allocator = run_options->allocator();

  if (GetRootPointsToSet().IsAmbiguous()) {
    return Unimplemented("Points-to set of root instruction is ambiguous");
  }

  BufferAllocations::Builder buffer_allocations_builder;
  for (BufferAllocation::Index i = 0; i < assignment_->Allocations().size();
       ++i) {
    const BufferAllocation& allocation = assignment_->GetAllocation(i);
    if (allocation.is_entry_computation_parameter()) {
      auto param_no = allocation.parameter_number();
      buffer_allocations_builder.RegisterBuffer(
          i, arguments[param_no]->buffer(/*index=*/{}));
    }
  }
  se::StreamExecutor* executor = run_options->stream()->parent();
  TF_ASSIGN_OR_RETURN(
      auto buffer_allocations,
      buffer_allocations_builder.Build(*assignment_, executor->device_ordinal(),
                                       memory_allocator));

  bool block_host_until_done =
      !memory_allocator->AllowsAsynchronousDeallocation();
  TF_RETURN_IF_ERROR(ExecuteThunks(run_options, *buffer_allocations,
                                   block_host_until_done,
                                   hlo_execution_profile));

  HloInstruction* root = hlo_module_->entry_computation()->root_instruction();
  auto device_ordinal = executor->device_ordinal();
  auto shaped_buffer = MakeUnique<ShapedBuffer>(
      root->shape(), executor->platform(), device_ordinal);

  // Copy DeviceMemoryBase values which contain the array(s) of the result into
  // the respective location in ShapedBuffer.
  std::set<se::DeviceMemoryBase> buffers_in_result;
  TF_RETURN_IF_ERROR(
      shaped_buffer->mutable_shape_index_to_buffer_entry()
          ->ForEachMutableElementWithStatus(
              [&buffer_allocations, &buffers_in_result, &shaped_buffer, this](
                  const ShapeIndex& index, size_t* buffer_entry) {
                const auto& sources = this->GetRootPointsToSet().element(index);
                // The points-to set is unambiguous so the set should be a
                // singleton. That is, we know exactly which instruction
                // produced the array at this element.
                CHECK_EQ(1, sources.size());
                auto src_hlo = sources[0]->instruction();

                VLOG(4) << "Looking at: " << sources[0];

                // The source instruction should have a non-parameter buffer
                // assigned.
                TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice slice,
                                    this->assignment_->GetUniqueSlice(
                                        src_hlo, sources[0]->index()));
                CHECK(!slice.allocation()->is_entry_computation_parameter());

                perftools::gputools::DeviceMemoryBase src_base =
                    buffer_allocations->GetDeviceAddress(slice.index());
                CHECK(!src_base.is_null() || src_base.size() == 0);
                shaped_buffer->mutable_buffers()->push_back(src_base);
                *buffer_entry = shaped_buffer->mutable_buffers()->size() - 1;

                buffers_in_result.insert(src_base);
                return Status::OK();
              }));
  TF_RETURN_IF_ERROR(
      buffer_allocations->TearDown(buffers_in_result, *assignment_));

  return std::move(shaped_buffer);
}

StatusOr<se::DeviceMemoryBase> GpuExecutable::ExecuteAsyncOnStream(
    const ServiceExecutableRunOptions* run_options,
    tensorflow::gtl::ArraySlice<se::DeviceMemoryBase> arguments) {
  // TODO(b/30671675): Implement asynchronous execution mode.
  return Unimplemented(
      "Asynchronous execution on stream is not yet supported on GPU.");
}

const PointsToSet& GpuExecutable::GetRootPointsToSet() const {
  return assignment_->points_to_analysis().GetPointsToSet(
      module().entry_computation()->root_instruction());
}

}  // namespace gpu
}  // namespace xla