aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/cpu/dot_op_emitter.cc
blob: e57d49172b18beb75cfbb482c5d732ef679ebe41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/cpu/dot_op_emitter.h"

#include <memory>
#include <vector>

#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Value.h"
#include "tensorflow/compiler/xla/service/cpu/cpu_runtime.h"
#include "tensorflow/compiler/xla/service/cpu/ir_emission_utils.h"
#include "tensorflow/compiler/xla/service/hlo_module.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/platform/logging.h"

namespace xla {

using llvm_ir::SetToFirstInsertPoint;

namespace cpu {

DotOpEmitter::DotOpEmitter(const HloInstruction& dot, bool transpose_lhs,
                           bool transpose_rhs,
                           const llvm_ir::IrArray& target_array,
                           const llvm_ir::IrArray& lhs_array,
                           const llvm_ir::IrArray& rhs_array,
                           llvm::Value* executable_run_options_value,
                           llvm::IRBuilder<>* ir_builder,
                           const HloModuleConfig& hlo_module_config)
    : dot_(dot),
      transpose_lhs_(transpose_lhs),
      transpose_rhs_(transpose_rhs),
      target_array_(target_array),
      lhs_array_(lhs_array),
      rhs_array_(rhs_array),
      executable_run_options_value_(executable_run_options_value),
      ir_builder_(ir_builder),
      hlo_module_config_(hlo_module_config) {}

/* static */ tensorflow::Status DotOpEmitter::EmitDotOperation(
    const HloInstruction& dot, bool transpose_lhs, bool transpose_rhs,
    const llvm_ir::IrArray& target_array, const llvm_ir::IrArray& lhs_array,
    const llvm_ir::IrArray& rhs_array,
    llvm::Value* executable_run_options_value, llvm::IRBuilder<>* ir_builder,
    const HloModuleConfig& hlo_module_config) {
  PrimitiveType type = target_array.GetShape().element_type();
  TF_RET_CHECK(F32 == type || F64 == type || C64 == type);
  DotOpEmitter dot_emitter(dot, transpose_lhs, transpose_rhs, target_array,
                           lhs_array, rhs_array, executable_run_options_value,
                           ir_builder, hlo_module_config);
  return dot_emitter.Emit();
}

bool DotOpEmitter::ShapesAreLegalForRuntimeDot() const { return true; }

tensorflow::Status DotOpEmitter::Emit() {
  // The dot operation performs a sum of products over dimension 0 of the left
  // hand side operand and dimension 1 of the right hand side operand.
  //
  // Let the shapes of lhs and rhs be defined as below:
  //
  //   lhs = [L{n-1} x L{n-2} x ... L{0}]
  //   rhs = [R{m-1} x R{m-2} x ... R{0}]
  //
  // The sum-of-products dimension in the lhs has size L{0} and the dimension in
  // the rhs has size R{1}. Necessarily, then:
  //
  //   L{0} == R{1}
  //
  // The output of the operation has the following shape:
  //
  //   output = [L{n-1} x L{n-2} x ... L{1} x R{m-1} x R{m-2} x ... R{2} x R{0}]
  //
  // To perform the operation we construct a loop nest with one for-loop for
  // each dimension of the output. Inside this loop nest is another for-loop
  // which performs the sum-of-products (the reduction loop) before storing
  // the result in the output buffer.

  const Shape& lhs_shape = lhs_array_.GetShape();
  const Shape& rhs_shape = rhs_array_.GetShape();

  if (ShapeUtil::IsScalar(lhs_shape) || ShapeUtil::IsScalar(rhs_shape)) {
    // If the operands are scalar, don't emit any loops.
    TF_RET_CHECK(ShapeUtil::IsScalar(lhs_shape) &&
                 ShapeUtil::IsScalar(rhs_shape));
    return EmitScalarDot();
  }

  if (PotentiallyImplementedAsEigenDot(dot_)) {
    return EmitCallToRuntime();
  }

  // Reduce along dimension 0 of the LHS and 1 of the RHS. Vectors are a special
  // case where the reduction dimension is 0 for both LHS and RHS. This results
  // in a vector dot product producing a scalar.
  int64 lhs_reduction_dimension = 0;
  if (ShapeUtil::Rank(lhs_shape) >= 2) {
    lhs_reduction_dimension =
        ShapeUtil::GetDimensionNumber(lhs_shape, transpose_lhs_ ? -2 : -1);
  }
  int64 rhs_reduction_dimension = 0;
  if (ShapeUtil::Rank(rhs_shape) >= 2) {
    rhs_reduction_dimension =
        ShapeUtil::GetDimensionNumber(rhs_shape, transpose_rhs_ ? -1 : -2);
  }

  // Verify the reduction dimension in the two operands are the same size.
  TF_RET_CHECK(lhs_shape.dimensions(lhs_reduction_dimension) ==
               rhs_shape.dimensions(rhs_reduction_dimension));

  bool lhs_reduction_along_minor_dimension =
      lhs_reduction_dimension == LayoutUtil::Minor(lhs_shape.layout(), 0);
  bool rhs_reduction_along_minor_dimension =
      rhs_reduction_dimension == LayoutUtil::Minor(rhs_shape.layout(), 0);

  // Create loop nests which loop through the LHS operand dimensions and the RHS
  // operand dimensions. The reduction dimension of the LHS and RHS are handled
  // in a separate innermost loop which performs the sum of products.
  llvm_ir::ForLoopNest loop_nest(llvm_ir::IrName(&dot_), ir_builder_);
  llvm_ir::IrArray::Index lhs_index = EmitOperandArrayLoopNest(
      &loop_nest, lhs_array_, lhs_reduction_dimension, "lhs");
  llvm_ir::IrArray::Index rhs_index = EmitOperandArrayLoopNest(
      &loop_nest, rhs_array_, rhs_reduction_dimension, "rhs");

  // Create the loop which does the sum of products reduction.
  //
  // The prevent_unrolling bit is working around a deficiency in LLVM's loop
  // vectorization pipeline, wherein in some cases unrolling a loop can prevent
  // effective vectorization.  Since we know that the IR we generate when
  // reducing across the minor dimension in both LHS and RHS is vectorized well
  // by the loop vectorizer, we block unrolling in that case to stop loop unroll
  // from messing up the vectorization.
  std::unique_ptr<llvm_ir::ForLoop> reduction_loop = loop_nest.AddLoop(
      0, lhs_shape.dimensions(lhs_reduction_dimension), "reduction",
      /*prevent_unrolling=*/lhs_reduction_along_minor_dimension &&
          rhs_reduction_along_minor_dimension);

  // The final entry in the rhs and lhs indexes is the indvar of the
  // reduction loop.
  lhs_index[lhs_reduction_dimension] = reduction_loop->GetIndVarValue();
  rhs_index[rhs_reduction_dimension] = reduction_loop->GetIndVarValue();

  // For computing the sum of products we alloca a single location to store the
  // dot product result as we accumulate it within the reduction loop. After the
  // reduction loop we load the result and store into the output array.

  // Function entry basic block.
  // - Emit alloca for accumulator
  llvm::Function* func = reduction_loop->GetPreheaderBasicBlock()->getParent();
  SetToFirstInsertPoint(&func->getEntryBlock(), ir_builder_);
  llvm::Type* accum_type = target_array_.GetElementLlvmType();
  llvm::Value* accum_address = ir_builder_->CreateAlloca(
      accum_type, /*ArraySize=*/nullptr, "accum_address");

  // Preheader basic block of reduction loop:
  // - Initialize accumulator to zero.
  llvm::BasicBlock* preheader_bb = reduction_loop->GetPreheaderBasicBlock();
  ir_builder_->SetInsertPoint(preheader_bb->getTerminator());

  ir_builder_->CreateStore(llvm::Constant::getNullValue(accum_type),
                           accum_address);

  // Body basic block of reduction loop:
  // - Load elements from lhs and rhs array.
  // - Multiply lhs-element and rhs-element.
  // - Load accumulator and add to product.
  // - Store sum back into accumulator.
  SetToFirstInsertPoint(reduction_loop->GetBodyBasicBlock(), ir_builder_);

  llvm::Value* lhs_element =
      lhs_array_.EmitReadArrayElement(lhs_index, ir_builder_);
  llvm::Value* rhs_element =
      rhs_array_.EmitReadArrayElement(rhs_index, ir_builder_);

  llvm::Value* accum = ir_builder_->CreateLoad(accum_address);
  llvm::Value* updated_accum;
  if (ShapeUtil::ElementIsComplex(lhs_shape)) {
    auto real = [&](llvm::Value* x) {
      return ir_builder_->CreateExtractValue(x, {0});
    };
    auto imag = [&](llvm::Value* x) {
      return ir_builder_->CreateExtractValue(x, {1});
    };
    llvm::Value* product_real = ir_builder_->CreateFSub(
        ir_builder_->CreateFMul(real(lhs_element), real(rhs_element)),
        ir_builder_->CreateFMul(imag(lhs_element), imag(rhs_element)));
    llvm::Value* product_imag = ir_builder_->CreateFAdd(
        ir_builder_->CreateFMul(real(lhs_element), imag(rhs_element)),
        ir_builder_->CreateFMul(imag(lhs_element), real(rhs_element)));
    updated_accum = ir_builder_->CreateInsertValue(
        accum, ir_builder_->CreateFAdd(real(accum), product_real), {0});
    updated_accum = ir_builder_->CreateInsertValue(
        updated_accum, ir_builder_->CreateFAdd(imag(accum), product_imag), {1});
  } else {
    llvm::Value* product = ir_builder_->CreateFMul(lhs_element, rhs_element);
    updated_accum = ir_builder_->CreateFAdd(accum, product);
  }
  ir_builder_->CreateStore(updated_accum, accum_address);

  // Exit basic block of reduction loop.
  // - Load accumulator value (the result).
  // - Store into output array.
  SetToFirstInsertPoint(reduction_loop->GetExitBasicBlock(), ir_builder_);

  llvm::Value* result = ir_builder_->CreateLoad(accum_address);

  // Create index into target address. The target index is the concatenation of
  // the rhs and lhs indexes with the reduction dimensions removed. The terms
  // from the rhs index are the lower dimensions in the index so we add them
  // first.
  llvm_ir::IrArray::Index target_index;
  for (int dimension = 0; dimension < lhs_index.size(); ++dimension) {
    if (dimension != lhs_reduction_dimension) {
      target_index.push_back(lhs_index[dimension]);
    }
  }
  for (int dimension = 0; dimension < rhs_index.size(); ++dimension) {
    if (dimension != rhs_reduction_dimension) {
      target_index.push_back(rhs_index[dimension]);
    }
  }

  target_array_.EmitWriteArrayElement(target_index, result, ir_builder_);

  // Set the IR builder insert point to the exit basic block of the outer most
  // loop.
  ir_builder_->SetInsertPoint(loop_nest.GetOuterLoopExitBasicBlock());

  return tensorflow::Status::OK();
}

tensorflow::Status DotOpEmitter::EmitScalarDot() {
  // A scalar dot is just a scalar multiply.
  llvm::Value* result;
  llvm::Value* lhs_value =
      lhs_array_.EmitReadArrayElement(/*index=*/{}, ir_builder_);
  llvm::Value* rhs_value =
      rhs_array_.EmitReadArrayElement(/*index=*/{}, ir_builder_);
  if (ShapeUtil::ElementIsComplex(lhs_array_.GetShape())) {
#define REAL(x) ir_builder_->CreateExtractValue(x, {0})
#define IMAG(x) ir_builder_->CreateExtractValue(x, {1})
    llvm::Value* real = ir_builder_->CreateFSub(
        ir_builder_->CreateFMul(REAL(lhs_value), REAL(rhs_value)),
        ir_builder_->CreateFMul(IMAG(lhs_value), IMAG(rhs_value)));
    llvm::Value* imag = ir_builder_->CreateFAdd(
        ir_builder_->CreateFMul(REAL(lhs_value), IMAG(rhs_value)),
        ir_builder_->CreateFMul(IMAG(lhs_value), REAL(rhs_value)));
#undef IMAG
#undef REAL
    result = llvm::ConstantAggregateZero::get(lhs_array_.GetElementLlvmType());
    result = ir_builder_->CreateInsertValue(result, real, {0});
    result = ir_builder_->CreateInsertValue(result, imag, {1});
  } else {
    result = ir_builder_->CreateFMul(lhs_value, rhs_value);
  }
  target_array_.EmitWriteArrayElement(/*index=*/{}, result, ir_builder_);
  return tensorflow::Status::OK();
}

tensorflow::Status DotOpEmitter::EmitCallToRuntime() {
  DCHECK(ShapesAreLegalForRuntimeDot());

  // The signature of the Eigen runtime matmul function is:
  //
  //   (void)(void* run_options, float* out, float* lhs, float* rhs,
  //          int64 m, int64 n, int64 k, int32 transpose_lhs,
  //          int32 transpose_rhs);
  // The two transpose_... parameters are actually booleans, but we use int32
  // to avoid target-dependent calling convention details.

  bool multi_threaded_eigen =
      hlo_module_config_.debug_options().xla_cpu_multi_thread_eigen();
  PrimitiveType type = target_array_.GetShape().element_type();
  llvm::Type* float_type;
  const char* fn_name;
  switch (type) {
    case F32:
      fn_name = multi_threaded_eigen
                    ? runtime::kEigenMatMulF32SymbolName
                    : runtime::kEigenSingleThreadedMatMulF32SymbolName;
      float_type = ir_builder_->getFloatTy();
      break;
    case F64:
      fn_name = multi_threaded_eigen
                    ? runtime::kEigenMatMulF64SymbolName
                    : runtime::kEigenSingleThreadedMatMulF64SymbolName;
      float_type = ir_builder_->getDoubleTy();
      break;
    default:
      return Unimplemented("Invalid type %s for dot operation",
                           PrimitiveType_Name(type).c_str());
  }

  llvm::Type* float_ptr_type = float_type->getPointerTo();
  llvm::Type* int64_type = ir_builder_->getInt64Ty();
  llvm::Type* int32_type = ir_builder_->getInt32Ty();
  llvm::Type* int8_ptr_type = ir_builder_->getInt8Ty()->getPointerTo();
  llvm::FunctionType* matmul_type = llvm::FunctionType::get(
      ir_builder_->getVoidTy(),
      {int8_ptr_type, float_ptr_type, float_ptr_type, float_ptr_type,
       int64_type, int64_type, int64_type, int32_type, int32_type},
      /*isVarArg=*/false);

  llvm::Function* function = ir_builder_->GetInsertBlock()->getParent();
  llvm::Module* module = function->getParent();

  llvm::Function* matmul_func = llvm::cast<llvm::Function>(
      module->getOrInsertFunction(fn_name, matmul_type));
  matmul_func->setCallingConv(llvm::CallingConv::C);
  matmul_func->setDoesNotThrow();
  matmul_func->setOnlyAccessesArgMemory();

  // The Eigen runtime function expects column-major layout. If the matrices are
  // row major, then use the following identity to compute the product:
  //
  //   (A x B)^T = B^T x A^T
  //
  // The connection between this identity and memory layout is that the
  // transpose operation can also be considered as an operation that changes the
  // memory layout of a matrix from row-major to column-major or vice versa.
  //
  // Effectively this involves swapping the 'lhs' with 'rhs' and 'm' with 'n'.

  const Shape& lhs_shape = lhs_array_.GetShape();
  const Shape& rhs_shape = rhs_array_.GetShape();

  CHECK(LayoutUtil::Equal(lhs_shape.layout(), rhs_shape.layout()));

  int64 m = lhs_shape.dimensions(transpose_lhs_ ? 1 : 0);
  int64 k = lhs_shape.dimensions(transpose_lhs_ ? 0 : 1);
  int64 n = rhs_shape.dimensions(transpose_rhs_ ? 0 : 1);
  const llvm_ir::IrArray* lhs = &lhs_array_;
  const llvm_ir::IrArray* rhs = &rhs_array_;
  bool transpose_lhs = transpose_lhs_;
  bool transpose_rhs = transpose_rhs_;

  bool is_column_major = lhs_shape.layout().minor_to_major(0) == 0;
  if (!is_column_major) {
    std::swap(m, n);
    std::swap(lhs, rhs);
    std::swap(transpose_lhs, transpose_rhs);
  }

  ir_builder_->CreateCall(
      matmul_func,
      {ir_builder_->CreateBitCast(executable_run_options_value_, int8_ptr_type),
       ir_builder_->CreateBitCast(target_array_.GetBasePointer(),
                                  float_ptr_type),
       ir_builder_->CreateBitCast(lhs->GetBasePointer(), float_ptr_type),
       ir_builder_->CreateBitCast(rhs->GetBasePointer(), float_ptr_type),
       ir_builder_->getInt64(m), ir_builder_->getInt64(n),
       ir_builder_->getInt64(k), ir_builder_->getInt32(transpose_lhs),
       ir_builder_->getInt32(transpose_rhs)});
  return tensorflow::Status::OK();
}

llvm_ir::IrArray::Index DotOpEmitter::EmitOperandArrayLoopNest(
    llvm_ir::ForLoopNest* loop_nest, const llvm_ir::IrArray& operand_array,
    int64 reduction_dimension, tensorflow::StringPiece name_suffix) {
  // Prepares the dimension list we will use to emit the loop nest. Outermost
  // loops are added first. Add loops in major-to-minor order, and skip the
  // reduction dimension.
  std::vector<int64> dimensions;
  const Shape& shape = operand_array.GetShape();
  for (int i = shape.layout().minor_to_major_size() - 1; i >= 0; --i) {
    int64 dimension = shape.layout().minor_to_major(i);
    if (dimension != reduction_dimension) {
      dimensions.push_back(dimension);
    }
  }

  // Create loop nest with one for-loop for each dimension of the
  // output.
  llvm_ir::IrArray::Index index =
      loop_nest->AddLoopsForShapeOnDimensions(shape, dimensions, name_suffix);
  // Verify every dimension except the reduction dimension was set in the index.
  for (int dimension = 0; dimension < index.size(); ++dimension) {
    if (dimension == reduction_dimension) {
      DCHECK_EQ(nullptr, index[dimension]);
    } else {
      DCHECK_NE(nullptr, index[dimension]);
    }
  }
  return index;
}

}  // namespace cpu
}  // namespace xla