aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/cpu/dot_op_emitter.cc
blob: 2a447a54b0132fd667ba8137371e63ea2fd6785b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/cpu/dot_op_emitter.h"

#include <memory>
#include <vector>

#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Value.h"
#include "tensorflow/compiler/xla/service/cpu/cpu_runtime.h"
#include "tensorflow/compiler/xla/service/cpu/ir_emission_utils.h"
#include "tensorflow/compiler/xla/service/hlo_module.h"
#include "tensorflow/compiler/xla/service/llvm_ir/kernel_support_library.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/service/llvm_ir/vector_support_library.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/platform/logging.h"

namespace xla {

using llvm_ir::SetToFirstInsertPoint;

namespace cpu {

namespace {
// Loads a tile of values from a 2D tensor.
class TileLoader {
 public:
  // Constructs a TileLoader that will load a tile consisting of
  // `tile_size_along_major_dim` vectors from the matrix `matrix`, starting at
  // `major_dim_offset` in the major dimension.  The tile size along the minor
  // dimension is the vector size, and that is implicitly determined by `vsl`.
  TileLoader(VectorSupportLibrary* vsl, llvm::IRBuilder<>* ir_builder,
             llvm::Value* matrix, int64 matrix_size_along_minor_dim,
             llvm::Value* major_dim_offset, int64 tile_size_along_major_dim)
      : vsl_(vsl) {
    pointers_.reserve(tile_size_along_major_dim);
    for (int64 i = 0; i < tile_size_along_major_dim; i++) {
      llvm::Value* total_offset = ir_builder->CreateMul(
          ir_builder->getInt64(matrix_size_along_minor_dim),
          ir_builder->CreateAdd(ir_builder->getInt64(i), major_dim_offset));
      pointers_.push_back(vsl_->ComputeOffsetPointer(matrix, total_offset));
    }
  }

  // Load a tile consisting of `tile_size_along_major_dim_` vectors starting at
  // `major_dim_offset_` in the major dimension and `minor_dim_offset` in the
  // minor dimension.
  std::vector<llvm::Value*> LoadTile(llvm::Value* minor_dim_offset) const {
    std::vector<llvm::Value*> result;
    result.reserve(pointers_.size());
    for (const auto& pointer : pointers_) {
      result.push_back(vsl_->LoadVector(pointer, minor_dim_offset));
    }
    return result;
  }

 private:
  VectorSupportLibrary* vsl_;
  std::vector<llvm::Value*> pointers_;
};

// Computes a dot product between "[M,K]{0,1} lhs" with a [K,1] vector (the
// layout of the vector does not matter).  This implementation uses a tiling
// scheme to improve performance.
//
// We logically separate the LHS matrix into four segments:
//
//   +----------------------+---+
//   |                      |   |
//   |                      |   |
//   |         A            | B |
//   |                      |   |
//   |                      |   |
//   |                      |   |
//   +----------------------+---+
//   |         C            | D |
//   +----------------------+---+
//
// where A is the largest submatrix of the LHS that can be evenly dividied into
// tiles.  For each tile in A, assuming tile_rows_ == tile_cols_ == 4, we have:
//
//   +---+---+---+---+       +--+--+--+--+
//   |M00|M10|M20|M30|       |V0|V1|V2|V3|
//   +---+---+---+---+       +--+--+--+--+
//   |M01|M11|M21|M31| and   |V0|V1|V2|V3|
//   +---+---+---+---+       +--+--+--+--+
//   |M02|M12|M22|M32|       |V0|V1|V2|V3|
//   +---+---+---+---+       +--+--+--+--+
//   |M03|M13|M23|M33|       |V0|V1|V2|V3|
//   +---+---+---+---+       +--+--+--+--+
//
// (Legend: rows are horizontal and columns are vertical; and each column is one
// llvm::Value of a vector type)
//
// where:
//
//   a. The left tile is from the column major left matrix.
//   b. The right tile is an elementwise broadcast of a [V0, V1, V2, V3]
//      vector loaded from the RHS vector.
//
// As we iterate through the column dimension, we compute the change to the
// result vector by an elementwise multiplication between the two tiles above
// followed by a reduction along the major dimension:
//
//                     +-----------------------------------+
//                     | M00*V0 + M10*V1 + M20*V2 + M30*V3 |
//                     +-----------------------------------+
//                     | M01*V0 + M11*V1 + M21*V2 + M31*V3 |
// Result[R:R+4] +=    +-----------------------------------+
//                     | M02*V0 + M12*V1 + M22*V2 + M32*V3 |
//                     +-----------------------------------+
//                     | M03*V0 + M13*V1 + M23*V2 + M33*V3 |
//                     +-----------------------------------+
//
// Where R is the starting row for the tile.
//
// We have an inner epilogue loop to deal with the "C" submatrix and an outer
// epilogue loop to deal with the B,D submarix.
//
// TODO(sanjoy): We should investigate if using gather loads and scatter stores
// can be used here have the same inner loop for both column-major and row-major
// matrix-vector products.
class ColumnMajorMatrixVectorProductEmitter {
 public:
  ColumnMajorMatrixVectorProductEmitter(PrimitiveType scalar_type,
                                        int64 tile_rows, int64 tile_cols,
                                        int64 m, int64 k, llvm::Value* lhs,
                                        llvm::Value* rhs, llvm::Value* result,
                                        llvm::IRBuilder<>* ir_builder)
      : scalar_type_(scalar_type),
        tile_rows_(tile_rows),
        tile_cols_(tile_cols),
        m_(m),
        k_(k),
        lhs_(lhs),
        rhs_(rhs),
        result_(result),
        ir_builder_(ir_builder),
        ksl_(ir_builder_),
        vsl_(scalar_type_, /*vector_size=*/tile_rows_, ir_builder_, "") {
    CHECK(tile_rows_ > 0 && IsPowerOfTwo(static_cast<uint64>(tile_rows_)));
  }

  void Emit();

 private:
  void EmitOuterLoopBody(llvm::Value* column, int64 column_count,
                         bool is_first_column);

  TileLoader GetLhsTileLoader(llvm::Value* column_start, int64 column_count) {
    return TileLoader(&vsl_, ir_builder_, /*matrix=*/lhs_,
                      /*matrix_size_along_minor_dim=*/m_,
                      /*major_dim_offset=*/column_start,
                      /*tile_size_along_major_dim=*/column_count);
  }

  // Load a tile of values from the RHS.  For the RHS a "tile" is a contiguous
  // sequnce of `count` values, each one broadcasted to the vector width.
  std::vector<llvm::Value*> LoadRhsTile(llvm::Value* offset, int64 count) {
    llvm::Value* base_pointer = vsl_.ComputeOffsetPointer(rhs_, offset);
    std::vector<llvm::Value*> result;
    result.reserve(count);
    for (int64 i = 0; i < count; i++) {
      result.push_back(vsl_.LoadBroadcast(base_pointer, i));
    }
    return result;
  }

  void EmitInnerLoopTiled(TileLoader* lhs_tile_loader,
                          const std::vector<llvm::Value*>& rhs_tile,
                          int64 columns, bool is_first_column);

  void EmitInnerLoopEpilogue(llvm::Value* current_tile_col, int64 columns,
                             bool is_first_tiled_column);

  PrimitiveType scalar_type_;
  int64 tile_rows_;
  int64 tile_cols_;
  int64 m_;
  int64 k_;
  llvm::Value* lhs_;
  llvm::Value* rhs_;
  llvm::Value* result_;
  llvm::IRBuilder<>* ir_builder_;
  KernelSupportLibrary ksl_;
  VectorSupportLibrary vsl_;
};

void ColumnMajorMatrixVectorProductEmitter::EmitOuterLoopBody(
    llvm::Value* column, int64 column_count, bool is_first_column) {
  TileLoader lhs_tile_loader = GetLhsTileLoader(/*column_start=*/column,
                                                /*column_count=*/column_count);

  std::vector<llvm::Value*> rhs_tile =
      LoadRhsTile(column, /*count=*/column_count);
  EmitInnerLoopTiled(&lhs_tile_loader, rhs_tile,
                     /*columns=*/column_count, is_first_column);
  EmitInnerLoopEpilogue(column, /*columns=*/column_count, is_first_column);
}

void ColumnMajorMatrixVectorProductEmitter::Emit() {
  // See the comment on the class declaration for the algorithm used here.
  int64 column_remainder = k_ % tile_cols_;
  int64 column_limit = k_ - column_remainder;

  ksl_.For("dot.outer.tiled",
           /*start=*/0, /*end=*/column_limit, /*step=*/tile_cols_,
           [&](llvm::Value* column, bool is_first_column) {
             EmitOuterLoopBody(column, tile_cols_, is_first_column);
           });

  if (column_remainder != 0) {
    EmitOuterLoopBody(ir_builder_->getInt64(column_limit), column_remainder,
                      column_limit == 0);
  }
}

void ColumnMajorMatrixVectorProductEmitter::EmitInnerLoopTiled(
    TileLoader* lhs_tile_loader, const std::vector<llvm::Value*>& rhs_tile,
    int64 columns, bool is_first_column) {
  int64 row_limit = m_ - (m_ % tile_rows_);

  ksl_.For("dot.inner.tiled", /*start=*/0, /*end=*/row_limit,
           /*step=*/tile_rows_, [&](llvm::Value* row) {
             std::vector<llvm::Value*> lhs_tile =
                 lhs_tile_loader->LoadTile(/*minor_dim_offset=*/row);
             llvm::Value* accumulator = is_first_column
                                            ? vsl_.GetZeroVector()
                                            : vsl_.LoadVector(result_, row);
             for (int i = 0; i < columns; i++) {
               accumulator = vsl_.MulAdd(lhs_tile[i], rhs_tile[i], accumulator);
             }
             vsl_.StoreVector(accumulator, result_, row);
           });
}

void ColumnMajorMatrixVectorProductEmitter::EmitInnerLoopEpilogue(
    llvm::Value* current_tile_col, int64 columns, bool is_first_tiled_column) {
  int64 row_start = m_ - (m_ % tile_rows_);
  if (row_start == m_) {
    return;
  }

  llvm::Value* columns_llvm = ir_builder_->getInt64(columns);

  // for (col = current_tile_col; col < (columns + current_tile_col); col++)
  //   for (row = row_start, row < m_; row++) {
  //     result[row] += lhs[row, col] * rhs[col]
  //     // Also take into account that if col is 0 then result[row] is not
  //     // initialized.
  //   }

  ksl_.For(
      "dot.inner.epilg.outer", /*start=*/current_tile_col,
      /*end=*/ir_builder_->CreateAdd(columns_llvm, current_tile_col),
      /*step=*/1, /*peel_first_iteration=*/false,
      [&](llvm::Value* col, llvm::Value* is_first_scalar_col) {
        llvm::Value* rhs_element = vsl_.LoadScalar(rhs_, col);
        llvm::Value* total_offset =
            ir_builder_->CreateMul(col, ir_builder_->getInt64(m_));
        llvm::Value* lhs_base_pointer =
            vsl_.ComputeOffsetPointer(lhs_, total_offset);
        ksl_.For(
            "dot.inner.epilg.inner", /*start=*/row_start, /*end=*/m_,
            /*step=*/1, [&](llvm::Value* scalar_row) {
              llvm::Value* product = vsl_.Mul(
                  vsl_.LoadScalar(lhs_base_pointer, scalar_row), rhs_element);
              llvm::Value* setting_result_first_time = ir_builder_->CreateAnd(
                  is_first_scalar_col,
                  ir_builder_->getInt1(is_first_tiled_column));
              ksl_.If(
                  setting_result_first_time,
                  [&]() { vsl_.StoreScalar(product, result_, scalar_row); },
                  [&]() {
                    vsl_.StoreScalar(
                        vsl_.Add(vsl_.LoadScalar(result_, scalar_row), product),
                        result_, scalar_row);
                  });
            });
      });
}

// Computes a dot product between "[M,K]{1,0} lhs" with a [K,1] vector (the
// layout of the vector does not matter).  This implementation uses a tiling
// scheme to improve performance.
//
// We logically separate the LHS matrix into four segments:
//
//   +----------------------+---+
//   |                      |   |
//   |                      |   |
//   |         A            | B |
//   |                      |   |
//   |                      |   |
//   |                      |   |
//   +----------------------+---+
//   |         C            | D |
//   +----------------------+---+
//
// where A is the largest submatrix of the LHS that can be evenly dividied into
// tiles.  For each tile in A, assuming tile_rows_ == tile_cols_ == 4, we have:
//
//   +---+---+---+---+
//   |M00|M10|M20|M30|
//   +---+---+---+---+       +--+--+--+--+
//   |M01|M11|M21|M31| and   |V0|V1|V2|V3|
//   +---+---+---+---+       +--+--+--+--+
//   |M02|M12|M22|M32|
//   +---+---+---+---+
//   |M03|M13|M23|M33|
//   +---+---+---+---+
//
// (Legend: rows are horizontal and columns are vertical; and each row is one
// llvm::Value of a vector type)
//
// where:
//
//   a. The left tile is loaded from the row major left matrix.
//   b. The right vector is loaded from the RHS vector.
//
// We keep 4 vector accumulators accumulating the following four vector
// expressions as we iterate over the row dimension:
//
//   +------+------+------+------+
//   |M0I*V0|M1I*V1|M2I*V2|M3I*V3|  for I in [0,4)
//   +------+------+------+------+
//
// In the end we do a horizontal reduction over these 4 vector accumulators to
// get 4 values in the result vector.
//
// We have an inner epilogue loop to deal with the "B" sub-matrix and an outer
// epilogue loop to deal with the C,D submatrix.
class RowMajorMatrixVectorProductEmitter {
 public:
  RowMajorMatrixVectorProductEmitter(PrimitiveType scalar_type, int64 tile_rows,
                                     int64 tile_cols, int64 m, int64 k,
                                     llvm::Value* lhs, llvm::Value* rhs,
                                     llvm::Value* result,
                                     llvm::IRBuilder<>* ir_builder)
      : scalar_type_(scalar_type),
        tile_rows_(tile_rows),
        tile_cols_(tile_cols),
        m_(m),
        k_(k),
        lhs_(lhs),
        rhs_(rhs),
        result_(result),
        ir_builder_(ir_builder),
        ksl_(ir_builder_),
        vsl_(scalar_type_, /*vector_size=*/tile_cols_, ir_builder_, "") {
    CHECK(tile_cols_ > 0 && IsPowerOfTwo(static_cast<uint64>(tile_cols_)));
  }

  void Emit();

 private:
  TileLoader GetLhsTileLoader(llvm::Value* row_start, int64 row_count) {
    return TileLoader(&vsl_, ir_builder_, /*matrix=*/lhs_,
                      /*matrix_size_along_minor_dim=*/k_,
                      /*major_dim_offset=*/row_start,
                      /*tile_size_along_major_dim=*/row_count);
  }

  void EmitOuterLoopBody(llvm::Value* row, int64 row_count);

  void EmitInnerLoopTiled(TileLoader* lhs_tile_loader, int64 rows,
                          std::vector<VectorVariable>* vector_accumulators);

  void EmitInnerLoopEpilogue(llvm::Value* current_tile_row, int64 rows,
                             std::vector<ScalarVariable>* scalar_accumulators);

  PrimitiveType scalar_type_;
  int64 tile_rows_;
  int64 tile_cols_;
  int64 m_;
  int64 k_;
  llvm::Value* lhs_;
  llvm::Value* rhs_;
  llvm::Value* result_;
  llvm::IRBuilder<>* ir_builder_;
  KernelSupportLibrary ksl_;
  VectorSupportLibrary vsl_;
};

void RowMajorMatrixVectorProductEmitter::EmitOuterLoopBody(llvm::Value* row,
                                                           int64 row_count) {
  TileLoader lhs_tile_loader = GetLhsTileLoader(/*row_start=*/row,
                                                /*row_count=*/row_count);
  std::vector<VectorVariable> vector_accumulators;
  std::vector<ScalarVariable> scalar_accumulators;
  for (int i = 0; i < row_count; i++) {
    vector_accumulators.emplace_back(&vsl_, vsl_.GetZeroVector());
    scalar_accumulators.emplace_back(&vsl_, vsl_.GetZeroScalar());
  }
  EmitInnerLoopTiled(&lhs_tile_loader, /*rows=*/row_count,
                     &vector_accumulators);
  EmitInnerLoopEpilogue(/*current_tile_row=*/row, /*rows=*/row_count,
                        &scalar_accumulators);

  for (int i = 0; i < row_count; i++) {
    llvm::Value* result_value =
        vsl_.Add(vsl_.AddReduce(vector_accumulators[i].Get()),
                 scalar_accumulators[i].Get());
    llvm::Value* offset = ir_builder_->CreateAdd(ir_builder_->getInt64(i), row);
    vsl_.StoreScalar(result_value, result_, offset);
  }
}

void RowMajorMatrixVectorProductEmitter::Emit() {
  // See the comment on the class declaration for the algorithm used here.
  int64 row_remainder = m_ % tile_rows_;
  int64 row_limit = m_ - row_remainder;

  ksl_.For("dot.outer.tiled",
           /*start=*/0, /*end=*/row_limit, /*step=*/tile_rows_,
           [&](llvm::Value* row) { EmitOuterLoopBody(row, tile_rows_); });

  if (row_remainder != 0) {
    EmitOuterLoopBody(ir_builder_->getInt64(row_limit), row_remainder);
  }
}

void RowMajorMatrixVectorProductEmitter::EmitInnerLoopTiled(
    TileLoader* lhs_tile_loader, int64 rows,
    std::vector<VectorVariable>* vector_accumulators) {
  int64 column_limit = k_ - (k_ % tile_cols_);

  ksl_.For("dot.inner.tiled", /*start=*/0, /*end=*/column_limit,
           /*step=*/tile_cols_, [&](llvm::Value* col) {
             std::vector<llvm::Value*> lhs_tile =
                 lhs_tile_loader->LoadTile(/*minor_dim_offset=*/col);
             llvm::Value* rhs_value = vsl_.LoadVector(rhs_, col);
             for (int i = 0; i < rows; i++) {
               llvm::Value* old_sum = (*vector_accumulators)[i].Get();
               (*vector_accumulators)[i].Set(
                   vsl_.Add(old_sum, vsl_.Mul(rhs_value, lhs_tile[i])));
             }
           });
}

void RowMajorMatrixVectorProductEmitter::EmitInnerLoopEpilogue(
    llvm::Value* current_tile_row, int64 rows,
    std::vector<ScalarVariable>* scalar_accumulators) {
  int64 column_start = k_ - (k_ % tile_cols_);
  if (column_start == k_) {
    return;
  }

  for (int r = 0; r < rows; r++) {
    llvm::Value* total_offset = ir_builder_->CreateMul(
        ir_builder_->CreateAdd(ir_builder_->getInt64(r), current_tile_row),
        ir_builder_->getInt64(k_));
    llvm::Value* lhs_base_pointer =
        vsl_.ComputeOffsetPointer(lhs_, total_offset);
    ksl_.For("dot.inner.epilg.inner", /*start=*/column_start, /*end=*/k_,
             /*step=*/1, [&](llvm::Value* scalar_col) {
               llvm::Value* product =
                   vsl_.Mul(vsl_.LoadScalar(lhs_base_pointer, scalar_col),
                            vsl_.LoadScalar(rhs_, scalar_col));
               llvm::Value* old_value = (*scalar_accumulators)[r].Get();
               (*scalar_accumulators)[r].Set(vsl_.Add(old_value, product));
             });
  }
}

}  // namespace

DotOpEmitter::DotOpEmitter(const HloInstruction& dot, bool transpose_lhs,
                           bool transpose_rhs,
                           const llvm_ir::IrArray& target_array,
                           const llvm_ir::IrArray& lhs_array,
                           const llvm_ir::IrArray& rhs_array,
                           llvm::Value* executable_run_options_value,
                           llvm::IRBuilder<>* ir_builder,
                           const HloModuleConfig& hlo_module_config)
    : dot_(dot),
      transpose_lhs_(transpose_lhs),
      transpose_rhs_(transpose_rhs),
      target_array_(target_array),
      lhs_array_(lhs_array),
      rhs_array_(rhs_array),
      executable_run_options_value_(executable_run_options_value),
      ir_builder_(ir_builder),
      hlo_module_config_(hlo_module_config) {}

/* static */ tensorflow::Status DotOpEmitter::EmitDotOperation(
    const HloInstruction& dot, bool transpose_lhs, bool transpose_rhs,
    const llvm_ir::IrArray& target_array, const llvm_ir::IrArray& lhs_array,
    const llvm_ir::IrArray& rhs_array,
    llvm::Value* executable_run_options_value, llvm::IRBuilder<>* ir_builder,
    const HloModuleConfig& hlo_module_config) {
  PrimitiveType type = target_array.GetShape().element_type();
  TF_RET_CHECK(F32 == type || F64 == type || C64 == type);
  DotOpEmitter dot_emitter(dot, transpose_lhs, transpose_rhs, target_array,
                           lhs_array, rhs_array, executable_run_options_value,
                           ir_builder, hlo_module_config);
  return dot_emitter.Emit();
}

bool DotOpEmitter::ShapesAreLegalForRuntimeDot() const { return true; }

bool DotOpEmitter::EmitLlvmIrDotIfProfitable() {
  if (dot_.shape().dimensions_size() != 2 ||
      ProfitableToImplementDotInUntiledLlvmIr(dot_) ==
          DotInLlvmIrProfitable::kYes) {
    return false;
  }

  if (!primitive_util::IsFloatingPointType(dot_.shape().element_type()) &&
      !primitive_util::IsIntegralType(dot_.shape().element_type())) {
    return false;
  }

  MatMultDims mat_mult_dims = GetMatMultDims();
  bool is_column_major_matrix_vector = false;
  bool is_row_major_matrix_vector = false;

  int64 m, k;
  bool swap_operands;

  if (mat_mult_dims.m == 1) {
    bool rhs_effectively_row_major =
        transpose_rhs_ ^ !mat_mult_dims.rhs_column_major;
    if (rhs_effectively_row_major) {
      k = mat_mult_dims.k;
      m = mat_mult_dims.n;
      is_column_major_matrix_vector = true;
      swap_operands = true;
    } else {
      k = mat_mult_dims.k;
      m = mat_mult_dims.n;
      is_row_major_matrix_vector = true;
      swap_operands = true;
    }
  }

  if (mat_mult_dims.n == 1) {
    bool lhs_effectively_column_major =
        transpose_lhs_ ^ mat_mult_dims.lhs_column_major;
    if (lhs_effectively_column_major) {
      m = mat_mult_dims.m;
      k = mat_mult_dims.k;
      is_column_major_matrix_vector = true;
      swap_operands = false;
    } else {
      m = mat_mult_dims.m;
      k = mat_mult_dims.k;
      is_row_major_matrix_vector = true;
      swap_operands = false;
    }
  }

  if (!is_column_major_matrix_vector && !is_row_major_matrix_vector) {
    return false;
  }

  int64 tiling_factor = GetGemvTilingFactor();
  CHECK_GT(tiling_factor, 0);

  if (is_column_major_matrix_vector) {
    VLOG(2) << "Emitting column major matrix-vector multiply with m = " << m
            << " and k = " << k;
    ColumnMajorMatrixVectorProductEmitter emitter(
        dot_.shape().element_type(), /*tile_rows=*/8,
        /*tile_cols=*/tiling_factor, m, k,
        swap_operands ? rhs_array_.GetBasePointer()
                      : lhs_array_.GetBasePointer(),
        swap_operands ? lhs_array_.GetBasePointer()
                      : rhs_array_.GetBasePointer(),
        target_array_.GetBasePointer(), ir_builder_);
    emitter.Emit();
  } else {
    VLOG(2) << "Emitting row major matrix-vector multiply with m = " << m
            << " and k = " << k;
    RowMajorMatrixVectorProductEmitter emitter(
        dot_.shape().element_type(), /*tile_rows=*/tiling_factor,
        /*tile_cols=*/8, m, k,
        swap_operands ? rhs_array_.GetBasePointer()
                      : lhs_array_.GetBasePointer(),
        swap_operands ? lhs_array_.GetBasePointer()
                      : rhs_array_.GetBasePointer(),
        target_array_.GetBasePointer(), ir_builder_);
    emitter.Emit();
  }

  return true;
}

tensorflow::Status DotOpEmitter::Emit() {
  // The dot operation performs a sum of products over dimension 0 of the left
  // hand side operand and dimension 1 of the right hand side operand.
  //
  // Let the shapes of lhs and rhs be defined as below:
  //
  //   lhs = [L{n-1} x L{n-2} x ... L{0}]
  //   rhs = [R{m-1} x R{m-2} x ... R{0}]
  //
  // The sum-of-products dimension in the lhs has size L{0} and the dimension in
  // the rhs has size R{1}. Necessarily, then:
  //
  //   L{0} == R{1}
  //
  // The output of the operation has the following shape:
  //
  //   output = [L{n-1} x L{n-2} x ... L{1} x R{m-1} x R{m-2} x ... R{2} x R{0}]
  //
  // To perform the operation we construct a loop nest with one for-loop for
  // each dimension of the output. Inside this loop nest is another for-loop
  // which performs the sum-of-products (the reduction loop) before storing
  // the result in the output buffer.

  const Shape& lhs_shape = lhs_array_.GetShape();
  const Shape& rhs_shape = rhs_array_.GetShape();

  if (ShapeUtil::IsScalar(lhs_shape) || ShapeUtil::IsScalar(rhs_shape)) {
    // If the operands are scalar, don't emit any loops.
    TF_RET_CHECK(ShapeUtil::IsScalar(lhs_shape) &&
                 ShapeUtil::IsScalar(rhs_shape));
    return EmitScalarDot();
  }

  if (EmitLlvmIrDotIfProfitable()) {
    return Status::OK();
  }

  if (PotentiallyImplementedAsEigenDot(dot_)) {
    return EmitCallToRuntime();
  }

  // Reduce along dimension 0 of the LHS and 1 of the RHS. Vectors are a special
  // case where the reduction dimension is 0 for both LHS and RHS. This results
  // in a vector dot product producing a scalar.
  int64 lhs_reduction_dimension = 0;
  if (ShapeUtil::Rank(lhs_shape) >= 2) {
    lhs_reduction_dimension =
        ShapeUtil::GetDimensionNumber(lhs_shape, transpose_lhs_ ? -2 : -1);
  }
  int64 rhs_reduction_dimension = 0;
  if (ShapeUtil::Rank(rhs_shape) >= 2) {
    rhs_reduction_dimension =
        ShapeUtil::GetDimensionNumber(rhs_shape, transpose_rhs_ ? -1 : -2);
  }

  // Verify the reduction dimension in the two operands are the same size.
  TF_RET_CHECK(lhs_shape.dimensions(lhs_reduction_dimension) ==
               rhs_shape.dimensions(rhs_reduction_dimension));

  bool lhs_reduction_along_minor_dimension =
      lhs_reduction_dimension == LayoutUtil::Minor(lhs_shape.layout(), 0);
  bool rhs_reduction_along_minor_dimension =
      rhs_reduction_dimension == LayoutUtil::Minor(rhs_shape.layout(), 0);

  // Create loop nests which loop through the LHS operand dimensions and the RHS
  // operand dimensions. The reduction dimension of the LHS and RHS are handled
  // in a separate innermost loop which performs the sum of products.
  llvm_ir::ForLoopNest loop_nest(llvm_ir::IrName(&dot_), ir_builder_);
  llvm_ir::IrArray::Index lhs_index = EmitOperandArrayLoopNest(
      &loop_nest, lhs_array_, lhs_reduction_dimension, "lhs");
  llvm_ir::IrArray::Index rhs_index = EmitOperandArrayLoopNest(
      &loop_nest, rhs_array_, rhs_reduction_dimension, "rhs");

  // Create the loop which does the sum of products reduction.
  //
  // The prevent_unrolling bit is working around a deficiency in LLVM's loop
  // vectorization pipeline, wherein in some cases unrolling a loop can prevent
  // effective vectorization.  Since we know that the IR we generate when
  // reducing across the minor dimension in both LHS and RHS is vectorized well
  // by the loop vectorizer, we block unrolling in that case to stop loop unroll
  // from messing up the vectorization.
  std::unique_ptr<llvm_ir::ForLoop> reduction_loop = loop_nest.AddLoop(
      0, lhs_shape.dimensions(lhs_reduction_dimension), "reduction",
      /*prevent_unrolling=*/lhs_reduction_along_minor_dimension &&
          rhs_reduction_along_minor_dimension);

  // The final entry in the rhs and lhs indexes is the indvar of the
  // reduction loop.
  lhs_index[lhs_reduction_dimension] = reduction_loop->GetIndVarValue();
  rhs_index[rhs_reduction_dimension] = reduction_loop->GetIndVarValue();

  // For computing the sum of products we alloca a single location to store the
  // dot product result as we accumulate it within the reduction loop. After the
  // reduction loop we load the result and store into the output array.

  // Function entry basic block.
  // - Emit alloca for accumulator
  llvm::Function* func = reduction_loop->GetPreheaderBasicBlock()->getParent();
  SetToFirstInsertPoint(&func->getEntryBlock(), ir_builder_);
  llvm::Type* accum_type = target_array_.GetElementLlvmType();
  llvm::Value* accum_address = ir_builder_->CreateAlloca(
      accum_type, /*ArraySize=*/nullptr, "accum_address");

  // Preheader basic block of reduction loop:
  // - Initialize accumulator to zero.
  llvm::BasicBlock* preheader_bb = reduction_loop->GetPreheaderBasicBlock();
  ir_builder_->SetInsertPoint(preheader_bb->getTerminator());

  ir_builder_->CreateStore(llvm::Constant::getNullValue(accum_type),
                           accum_address);

  // Body basic block of reduction loop:
  // - Load elements from lhs and rhs array.
  // - Multiply lhs-element and rhs-element.
  // - Load accumulator and add to product.
  // - Store sum back into accumulator.
  SetToFirstInsertPoint(reduction_loop->GetBodyBasicBlock(), ir_builder_);

  llvm::Value* lhs_element =
      lhs_array_.EmitReadArrayElement(lhs_index, ir_builder_);
  llvm::Value* rhs_element =
      rhs_array_.EmitReadArrayElement(rhs_index, ir_builder_);

  llvm::Value* accum = ir_builder_->CreateLoad(accum_address);
  llvm::Value* updated_accum;
  if (ShapeUtil::ElementIsComplex(lhs_shape)) {
    auto real = [&](llvm::Value* x) {
      return ir_builder_->CreateExtractValue(x, {0});
    };
    auto imag = [&](llvm::Value* x) {
      return ir_builder_->CreateExtractValue(x, {1});
    };
    llvm::Value* product_real = ir_builder_->CreateFSub(
        ir_builder_->CreateFMul(real(lhs_element), real(rhs_element)),
        ir_builder_->CreateFMul(imag(lhs_element), imag(rhs_element)));
    llvm::Value* product_imag = ir_builder_->CreateFAdd(
        ir_builder_->CreateFMul(real(lhs_element), imag(rhs_element)),
        ir_builder_->CreateFMul(imag(lhs_element), real(rhs_element)));
    updated_accum = ir_builder_->CreateInsertValue(
        accum, ir_builder_->CreateFAdd(real(accum), product_real), {0});
    updated_accum = ir_builder_->CreateInsertValue(
        updated_accum, ir_builder_->CreateFAdd(imag(accum), product_imag), {1});
  } else {
    llvm::Value* product = ir_builder_->CreateFMul(lhs_element, rhs_element);
    updated_accum = ir_builder_->CreateFAdd(accum, product);
  }
  ir_builder_->CreateStore(updated_accum, accum_address);

  // Exit basic block of reduction loop.
  // - Load accumulator value (the result).
  // - Store into output array.
  SetToFirstInsertPoint(reduction_loop->GetExitBasicBlock(), ir_builder_);

  llvm::Value* result = ir_builder_->CreateLoad(accum_address);

  // Create index into target address. The target index is the concatenation of
  // the rhs and lhs indexes with the reduction dimensions removed. The terms
  // from the rhs index are the lower dimensions in the index so we add them
  // first.
  llvm_ir::IrArray::Index target_index;
  for (int dimension = 0; dimension < lhs_index.size(); ++dimension) {
    if (dimension != lhs_reduction_dimension) {
      target_index.push_back(lhs_index[dimension]);
    }
  }
  for (int dimension = 0; dimension < rhs_index.size(); ++dimension) {
    if (dimension != rhs_reduction_dimension) {
      target_index.push_back(rhs_index[dimension]);
    }
  }

  target_array_.EmitWriteArrayElement(target_index, result, ir_builder_);

  // Set the IR builder insert point to the exit basic block of the outer most
  // loop.
  ir_builder_->SetInsertPoint(loop_nest.GetOuterLoopExitBasicBlock());

  return tensorflow::Status::OK();
}

tensorflow::Status DotOpEmitter::EmitScalarDot() {
  // A scalar dot is just a scalar multiply.
  llvm::Value* result;
  llvm::Value* lhs_value =
      lhs_array_.EmitReadArrayElement(/*index=*/{}, ir_builder_);
  llvm::Value* rhs_value =
      rhs_array_.EmitReadArrayElement(/*index=*/{}, ir_builder_);
  if (ShapeUtil::ElementIsComplex(lhs_array_.GetShape())) {
#define REAL(x) ir_builder_->CreateExtractValue(x, {0})
#define IMAG(x) ir_builder_->CreateExtractValue(x, {1})
    llvm::Value* real = ir_builder_->CreateFSub(
        ir_builder_->CreateFMul(REAL(lhs_value), REAL(rhs_value)),
        ir_builder_->CreateFMul(IMAG(lhs_value), IMAG(rhs_value)));
    llvm::Value* imag = ir_builder_->CreateFAdd(
        ir_builder_->CreateFMul(REAL(lhs_value), IMAG(rhs_value)),
        ir_builder_->CreateFMul(IMAG(lhs_value), REAL(rhs_value)));
#undef IMAG
#undef REAL
    result = llvm::ConstantAggregateZero::get(lhs_array_.GetElementLlvmType());
    result = ir_builder_->CreateInsertValue(result, real, {0});
    result = ir_builder_->CreateInsertValue(result, imag, {1});
  } else {
    result = ir_builder_->CreateFMul(lhs_value, rhs_value);
  }
  target_array_.EmitWriteArrayElement(/*index=*/{}, result, ir_builder_);
  return tensorflow::Status::OK();
}

tensorflow::Status DotOpEmitter::EmitCallToRuntime() {
  DCHECK(ShapesAreLegalForRuntimeDot());

  // The signature of the Eigen runtime matmul function is:
  //
  //   (void)(void* run_options, float* out, float* lhs, float* rhs,
  //          int64 m, int64 n, int64 k, int32 transpose_lhs,
  //          int32 transpose_rhs);
  // The two transpose_... parameters are actually booleans, but we use int32
  // to avoid target-dependent calling convention details.

  bool multi_threaded_eigen =
      hlo_module_config_.debug_options().xla_cpu_multi_thread_eigen();
  PrimitiveType type = target_array_.GetShape().element_type();
  llvm::Type* float_type;
  const char* fn_name;
  switch (type) {
    case F32:
      fn_name = multi_threaded_eigen
                    ? runtime::kEigenMatMulF32SymbolName
                    : runtime::kEigenSingleThreadedMatMulF32SymbolName;
      float_type = ir_builder_->getFloatTy();
      break;
    case F64:
      fn_name = multi_threaded_eigen
                    ? runtime::kEigenMatMulF64SymbolName
                    : runtime::kEigenSingleThreadedMatMulF64SymbolName;
      float_type = ir_builder_->getDoubleTy();
      break;
    default:
      return Unimplemented("Invalid type %s for dot operation",
                           PrimitiveType_Name(type).c_str());
  }

  llvm::Type* float_ptr_type = float_type->getPointerTo();
  llvm::Type* int64_type = ir_builder_->getInt64Ty();
  llvm::Type* int32_type = ir_builder_->getInt32Ty();
  llvm::Type* int8_ptr_type = ir_builder_->getInt8Ty()->getPointerTo();
  llvm::FunctionType* matmul_type = llvm::FunctionType::get(
      ir_builder_->getVoidTy(),
      {int8_ptr_type, float_ptr_type, float_ptr_type, float_ptr_type,
       int64_type, int64_type, int64_type, int32_type, int32_type},
      /*isVarArg=*/false);

  llvm::Function* function = ir_builder_->GetInsertBlock()->getParent();
  llvm::Module* module = function->getParent();

  llvm::Function* matmul_func = llvm::cast<llvm::Function>(
      module->getOrInsertFunction(fn_name, matmul_type));
  matmul_func->setCallingConv(llvm::CallingConv::C);
  matmul_func->setDoesNotThrow();
  matmul_func->setOnlyAccessesArgMemory();

  // The Eigen runtime function expects column-major layout. If the matrices are
  // row major, then use the following identity to compute the product:
  //
  //   (A x B)^T = B^T x A^T
  //
  // The connection between this identity and memory layout is that the
  // transpose operation can also be considered as an operation that changes the
  // memory layout of a matrix from row-major to column-major or vice versa.
  //
  // Effectively this involves swapping the 'lhs' with 'rhs' and 'm' with 'n'.

  MatMultDims mat_mult_dims = GetMatMultDims();

  CHECK_EQ(mat_mult_dims.lhs_column_major, mat_mult_dims.rhs_column_major);

  const llvm_ir::IrArray* lhs = &lhs_array_;
  const llvm_ir::IrArray* rhs = &rhs_array_;
  bool transpose_lhs = transpose_lhs_;
  bool transpose_rhs = transpose_rhs_;

  if (!mat_mult_dims.lhs_column_major) {
    std::swap(mat_mult_dims.m, mat_mult_dims.n);
    std::swap(lhs, rhs);
    std::swap(transpose_lhs, transpose_rhs);
  }

  ir_builder_->CreateCall(
      matmul_func,
      {ir_builder_->CreateBitCast(executable_run_options_value_, int8_ptr_type),
       ir_builder_->CreateBitCast(target_array_.GetBasePointer(),
                                  float_ptr_type),
       ir_builder_->CreateBitCast(lhs->GetBasePointer(), float_ptr_type),
       ir_builder_->CreateBitCast(rhs->GetBasePointer(), float_ptr_type),
       ir_builder_->getInt64(mat_mult_dims.m),
       ir_builder_->getInt64(mat_mult_dims.n),
       ir_builder_->getInt64(mat_mult_dims.k),
       ir_builder_->getInt32(transpose_lhs),
       ir_builder_->getInt32(transpose_rhs)});
  return tensorflow::Status::OK();
}

DotOpEmitter::MatMultDims DotOpEmitter::GetMatMultDims() const {
  CHECK_EQ(dot_.shape().dimensions_size(), 2);

  const Shape& lhs_shape = lhs_array_.GetShape();
  const Shape& rhs_shape = rhs_array_.GetShape();

  return {lhs_shape.dimensions(transpose_lhs_ ? 1 : 0),
          lhs_shape.dimensions(transpose_lhs_ ? 0 : 1),
          rhs_shape.dimensions(transpose_rhs_ ? 0 : 1),
          lhs_shape.layout().minor_to_major(0) == 0,
          rhs_shape.layout().minor_to_major(0) == 0};
}

llvm_ir::IrArray::Index DotOpEmitter::EmitOperandArrayLoopNest(
    llvm_ir::ForLoopNest* loop_nest, const llvm_ir::IrArray& operand_array,
    int64 reduction_dimension, tensorflow::StringPiece name_suffix) {
  // Prepares the dimension list we will use to emit the loop nest. Outermost
  // loops are added first. Add loops in major-to-minor order, and skip the
  // reduction dimension.
  std::vector<int64> dimensions;
  const Shape& shape = operand_array.GetShape();
  for (int i = shape.layout().minor_to_major_size() - 1; i >= 0; --i) {
    int64 dimension = shape.layout().minor_to_major(i);
    if (dimension != reduction_dimension) {
      dimensions.push_back(dimension);
    }
  }

  // Create loop nest with one for-loop for each dimension of the
  // output.
  llvm_ir::IrArray::Index index =
      loop_nest->AddLoopsForShapeOnDimensions(shape, dimensions, name_suffix);
  // Verify every dimension except the reduction dimension was set in the index.
  for (int dimension = 0; dimension < index.size(); ++dimension) {
    if (dimension == reduction_dimension) {
      DCHECK_EQ(nullptr, index[dimension]);
    } else {
      DCHECK_NE(nullptr, index[dimension]);
    }
  }
  return index;
}

}  // namespace cpu
}  // namespace xla