aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/service/cpu/cpu_executable.cc
blob: c376864c3e1f882e11bc05f8cf93f2fb1c88e4ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/xla/service/cpu/cpu_executable.h"

#include <stdint.h>
#include <algorithm>
#include <set>
#include <unordered_set>
#include <utility>
#include <vector>

#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "tensorflow/compiler/xla/service/buffer_assignment.h"
#include "tensorflow/compiler/xla/service/computation_layout.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_module.h"
#include "tensorflow/compiler/xla/service/logical_buffer.h"
#include "tensorflow/compiler/xla/service/shaped_buffer.h"
#include "tensorflow/compiler/xla/shape_tree.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/mem.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/stream_executor/host/host_stream.h"

namespace xla {
namespace cpu {

CpuExecutable::CpuExecutable(
    std::unique_ptr<SimpleOrcJIT> jit,
    std::unique_ptr<const BufferAssignment> assignment,
    std::unique_ptr<const HloModule> hlo_module,
    const string& entry_function_name,
    std::unique_ptr<HloProfilePrinterData> hlo_profile_printer_data,
    std::unique_ptr<HloProfileIndexMap> hlo_profile_index_map)
    : Executable(std::move(hlo_module), std::move(hlo_profile_printer_data),
                 std::move(hlo_profile_index_map)),
      jit_(std::move(jit)),
      assignment_(std::move(assignment)) {
  // Resolve symbols in the constructor rather than at execution time to avoid
  // races because FindSymbol is not thread safe.
  llvm::JITSymbol sym = jit_->FindCompiledSymbol(entry_function_name);
  // We expect to find the symbol provided with entry_function_name; otherwise
  // this is an internal error.
  CHECK(sym) << "Symbol " << entry_function_name << " not found.";
  // getAddress can do work under the hood in the jit, so it needs to be
  // guarded by the mutex.
  compute_function_ =
      reinterpret_cast<ComputeFunctionType>(cantFail(sym.getAddress()));
  VLOG(1) << "compute_function_ at address "
          << reinterpret_cast<void*>(compute_function_);
}

StatusOr<std::pair<std::vector<se::DeviceMemoryBase>,
                   std::vector<OwningDeviceMemory>>>
CpuExecutable::CreateTempArray(
    DeviceMemoryAllocator* memory_allocator, int device_ordinal,
    tensorflow::gtl::ArraySlice<const ShapedBuffer*> arguments) {
  std::vector<se::DeviceMemoryBase> unowning_buffers(
      assignment_->Allocations().size());
  std::vector<OwningDeviceMemory> owning_buffers(
      assignment_->Allocations().size());
  VLOG(3) << "Allocating " << assignment_->Allocations().size()
          << " allocations for module " << module().name();
  for (BufferAllocation::Index i = 0; i < assignment_->Allocations().size();
       ++i) {
    auto& allocation = assignment_->GetAllocation(i);

    VLOG(3) << allocation.ToString();

    if (allocation.is_entry_computation_parameter()) {
      unowning_buffers[i] = arguments[allocation.parameter_number()]->buffer(
          allocation.param_shape_index());
      VLOG(3) << "allocation #" << i << " is a parameter";
      continue;
    }

    if (allocation.is_constant()) {
      VLOG(3) << "allocation #" << i << " is a constant";
      continue;
    }

    if (allocation.is_thread_local()) {
      VLOG(3) << "buffer #" << i << " is thread-local";
      continue;
    }

    int64 buffer_size = allocation.size();
    if (!owning_buffers[i].is_null()) {
      VLOG(3) << "buffer #" << i
              << " is in the preallocated result ShapedBuffer";
    } else {
      TF_ASSIGN_OR_RETURN(owning_buffers[i], memory_allocator->Allocate(
                                                 device_ordinal, buffer_size));
      unowning_buffers[i] = owning_buffers[i].AsDeviceMemoryBase();

      VLOG(3) << "buffer #" << i << " allocated " << buffer_size << " bytes ["
              << owning_buffers[i].opaque() << "]";
    }

    // Since the output buffer and all the temporary buffers were written into
    // by the JITed code, msan has no way of knowing their memory was
    // initialized. Mark them initialized so that msan doesn't flag loads from
    // these buffers.
    TF_ANNOTATE_MEMORY_IS_INITIALIZED(owning_buffers[i].opaque(), buffer_size);
  }

  TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice result_slice,
                      assignment_->GetUniqueTopLevelOutputSlice());
  VLOG(3) << "result index: " << result_slice.index();

  return {{std::move(unowning_buffers), std::move(owning_buffers)}};
}

Status CpuExecutable::ExecuteComputeFunction(
    const ExecutableRunOptions* run_options,
    tensorflow::gtl::ArraySlice<se::DeviceMemoryBase> buffers,
    HloExecutionProfile* hlo_execution_profile) {
  // The calling convention for JITed functions is:
  //
  //  void function(void* result, const void* run_options, void** args_array,
  //                void** temps_array)
  //
  // result: Points at the result.
  // run_options: the ExecutableRunOptions object.
  // args_array: null
  // temps_array: An array of pointers, containing pointers to temporary buffers
  //              required by the executable adn pointers to entry computation
  //              parameters.
  //

  uint64 start_micros = tensorflow::Env::Default()->NowMicros();

  size_t profile_counters_size =
      hlo_execution_profile ? hlo_execution_profile->profile_counters().size()
                            : 0;
  int64* profile_counters =
      hlo_execution_profile
          ? hlo_execution_profile->mutable_profile_counters()->data()
          : nullptr;

  // Call the computation function following the calling convention.
  std::vector<void*> buffer_pointers;
  for (auto& buffer : buffers) {
    buffer_pointers.push_back(const_cast<void*>(buffer.opaque()));
  }
  TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice result_slice,
                      assignment_->GetUniqueTopLevelOutputSlice());
  void* result_buffer = buffer_pointers[result_slice.index()];
  if (VLOG_IS_ON(3)) {
    VLOG(3) << "Executing compute function:";
    VLOG(3) << tensorflow::strings::Printf(
        "  func(void* result, void* params[null], void* temps[%zu], "
        "uint64 profile_counters[%zu])",
        buffer_pointers.size(), profile_counters_size);
    VLOG(3) << tensorflow::strings::Printf("    result = %p", result_buffer);
    auto ptr_printer = [](string* out, const void* p) {
      tensorflow::strings::StrAppend(out, tensorflow::strings::Printf("%p", p));
    };
    VLOG(3) << "    params = nullptr";
    VLOG(3) << tensorflow::strings::Printf(
        "    temps = [%s]",
        tensorflow::str_util::Join(buffer_pointers, ", ", ptr_printer).c_str());
    VLOG(3) << tensorflow::strings::Printf("    profile_counters = %p",
                                           profile_counters);
  }

  compute_function_(result_buffer, run_options, nullptr, buffer_pointers.data(),
                    profile_counters);

  uint64 end_micros = tensorflow::Env::Default()->NowMicros();

  {
    tensorflow::mutex_lock lock(mutex_);
    const double nanoseconds = (end_micros - start_micros) * 1000.0;
    execution_profile_.set_compute_time_ns(std::max(nanoseconds, 1.0));
    // If hlo profiling was disabled then the cycle count is left empty.
    if (hlo_execution_profile) {
      execution_profile_.set_compute_cycle_count(
          hlo_execution_profile->total_cycles_executed(
              *module().entry_computation()));
    }
  }

  return Status::OK();
}

StatusOr<ScopedShapedBuffer> CpuExecutable::CreateResultShapedBuffer(
    const ServiceExecutableRunOptions* run_options,
    tensorflow::gtl::MutableArraySlice<OwningDeviceMemory> buffers) {
  se::Stream* stream = run_options->stream();
  ScopedShapedBuffer result_buffer(
      /*on_host_shape=*/result_shape(),
      /*on_device_shape=*/result_shape(), run_options->allocator(),
      stream->parent()->device_ordinal());

  // Move OwningDeviceMemory values which contain the array(s) of the result
  // into the respective location in ScopedShapedBuffer which is returned to the
  // caller.
  TF_RETURN_IF_ERROR(result_buffer.buffers().ForEachMutableElementWithStatus(
      [&](const ShapeIndex& index, se::DeviceMemoryBase* device_memory) {
        const auto& sources = this->GetRootPointsToSet().element(index);
        // The points to set is unambiguous so the set should be a
        // singleton.
        CHECK_EQ(1, sources.size());
        const LogicalBuffer* buffer_source = sources[0];
        HloInstruction* src = buffer_source->instruction();

        // The source for this result buffer can be a nested buffer such as
        // a tuple element. The source instruction should have a
        // non-parameter buffer assigned.
        TF_ASSIGN_OR_RETURN(
            const BufferAllocation::Slice slice,
            this->assignment_->GetUniqueSlice(src, buffer_source->index()));
        CHECK(!slice.allocation()->is_entry_computation_parameter());

        const BufferAllocation::Index buffer_index = slice.index();
        OwningDeviceMemory& buffer = buffers[buffer_index];
        CHECK(!buffer.is_null() || buffer.size() == 0);
        *device_memory = buffer.Forget();
        return Status::OK();
      }));
  return std::move(result_buffer);
}

StatusOr<ScopedShapedBuffer> CpuExecutable::ExecuteOnStream(
    const ServiceExecutableRunOptions* run_options,
    tensorflow::gtl::ArraySlice<const ShapedBuffer*> arguments,
    HloExecutionProfile* hlo_execution_profile) {
  TF_ASSIGN_OR_RETURN(
      auto result,
      ExecuteAsyncOnStreamImpl(run_options, arguments, hlo_execution_profile));
  TF_RETURN_IF_ERROR(run_options->stream()->BlockHostUntilDone());
  return std::move(result);
}

StatusOr<ScopedShapedBuffer> CpuExecutable::ExecuteAsyncOnStream(
    const ServiceExecutableRunOptions* run_options,
    tensorflow::gtl::ArraySlice<const ShapedBuffer*> arguments) {
  if (hlo_profiling_enabled()) {
    return Unimplemented(
        "Asynchronous execution on stream with hlo profiling is not yet "
        "supported on CPU.");
  }
  return ExecuteAsyncOnStreamImpl(run_options, arguments, nullptr);
}

StatusOr<ScopedShapedBuffer> CpuExecutable::ExecuteAsyncOnStreamImpl(
    const ServiceExecutableRunOptions* run_options,
    tensorflow::gtl::ArraySlice<const ShapedBuffer*> arguments,
    HloExecutionProfile* hlo_execution_profile) {
  if (GetRootPointsToSet().IsAmbiguous()) {
    return Unimplemented("Points-to set of root instruction is ambiguous");
  }

  auto* host_stream = dynamic_cast<se::host::HostStream*>(
      run_options->stream()->implementation());
  se::Stream* stream = run_options->stream();
  DeviceMemoryAllocator* memory_allocator = run_options->allocator();
  std::vector<OwningDeviceMemory> owning_buffers;
  std::vector<se::DeviceMemoryBase> unowning_buffers;
  TF_ASSIGN_OR_RETURN(
      std::tie(unowning_buffers, owning_buffers),
      CreateTempArray(memory_allocator, stream->parent()->device_ordinal(),
                      arguments));

  TF_ASSIGN_OR_RETURN(ScopedShapedBuffer result,
                      CreateResultShapedBuffer(run_options, &owning_buffers));

  // At this point, `unowning_buffers` contains unowning pointers to all of our
  // buffers, and `buffers` contains owning pointers to the non-live-out
  // buffers.  Enqueue a task which keeps alive the non-live-out buffers.
  //
  // Logically we want this lambda to capture `buffers` by move, ultimately our
  // functor needs to be wrapped in an std::function, and that requires its
  // functor to be copyable.  Thus we perpitrate the hack of capturing buffers
  // "by shared pointer".
  //
  // We also need to change the types of some of the variables we capture:
  // run_options needs to change from a pointer to a value type, and arguments
  // needs to change from an ArraySlice into a vector.  We use a struct instead
  // of a lambda to make this explicit.
  struct AsyncRunTask {
    CpuExecutable* executable;
    ServiceExecutableRunOptions run_options;
    std::vector<se::DeviceMemoryBase> unowning_buffers;
    std::shared_ptr<std::vector<OwningDeviceMemory>> buffers;
    HloExecutionProfile* hlo_execution_profile;

    void operator()() {
      // Failing a CHECK here is not great, but I don't see an obvious way to
      // return a failed Status asynchronously.
      TF_CHECK_OK(executable->ExecuteComputeFunction(
          &run_options.run_options(), unowning_buffers, hlo_execution_profile));
    }
  };
  host_stream->EnqueueTask(
      AsyncRunTask{this, *run_options, std::move(unowning_buffers),
                   std::make_shared<std::vector<OwningDeviceMemory>>(
                       std::move(owning_buffers)),
                   hlo_execution_profile});

  return std::move(result);
}

/*static*/ int64 CpuExecutable::ShapeSizeBytes(const Shape& shape) {
  // On the cpu, opaques are pointers.
  if (ShapeUtil::IsOpaque(shape)) {
    return sizeof(void*);
  }
  return ShapeUtil::ByteSizeOf(shape, sizeof(void*));
}

const PointsToSet& CpuExecutable::GetRootPointsToSet() const {
  return assignment_->points_to_analysis().GetPointsToSet(
      module().entry_computation()->root_instruction());
}

}  // namespace cpu
}  // namespace xla