aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/xla/array.h
blob: 213e0bac6c77e9972de8d4dd7dfc8c7cf3a1b865 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_COMPILER_XLA_ARRAY_H_
#define TENSORFLOW_COMPILER_XLA_ARRAY_H_

#include <algorithm>
#include <array>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <random>
#include <type_traits>
#include <vector>

#include "tensorflow/compiler/xla/status.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/core/lib/core/bits.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/types.h"

namespace xla {

namespace array_impl {

// conjunction
//
// Performs a compile-time logical AND operation on the passed types (which
// must have  `::value` members convertible to `bool`. Short-circuits if it
// encounters any `false` members (and does not compare the `::value` members
// of any remaining arguments).
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::conjunction` metafunction.
template <typename... Ts>
struct conjunction;

template <typename T, typename... Ts>
struct conjunction<T, Ts...>
    : std::conditional<T::value, conjunction<Ts...>, T>::type {};

template <>
struct conjunction<> : std::true_type {};

// A type trait that is valid when all elements in a parameter pack are of
// integral type.
template <typename... T>
using pack_is_integral = conjunction<std::is_integral<T>...>;

// Compares three same-sized vectors elementwise. For each item in `values`,
// returns false if any of values[i] is outside the half-open range [starts[i],
// ends[i]).
template <typename C1, typename C2, typename C3>
bool all_inside_range(const C1& values, const C2& range_starts,
                      const C3& range_ends) {
  for (size_t i = 0, e = values.size(); i < e; ++i) {
    if (values[i] < range_starts[i] || values[i] >= range_ends[i]) {
      return false;
    }
  }
  return true;
}

}  // namespace array_impl

// General N dimensional array class with arbitrary value type.
template <typename T>
class Array {
 public:
  // Type inference can have a hard time parsing very deep initializer list
  // nests, especially if one or more dimensions is one as the compiler just
  // sees a single-element integer initializer. These typedefs allow casting
  // explicitly with less typing.
  using InitializerList1D = std::initializer_list<T>;
  using InitializerList2D = std::initializer_list<InitializerList1D>;
  using InitializerList3D = std::initializer_list<InitializerList2D>;
  using InitializerList4D = std::initializer_list<InitializerList3D>;

  using value_type = T;

  // Creates a new array with the specified dimensions.
  explicit Array(tensorflow::gtl::ArraySlice<int64> sizes)
      : Array(sizes, T()) {}

  // Creates a new array with the specified dimensions and specified value for
  // every cell.
  Array(tensorflow::gtl::ArraySlice<int64> sizes, T value)
      : sizes_(sizes.begin(), sizes.end()), values_(new T[num_elements()]) {
    Fill(value);
  }

  // Creates a 2D array from the given nested initializer list. The outer
  // initializer list is the first dimension, the inner is the second dimension.
  // For example, {{1, 2, 3}, {4, 5, 6}} results in an array with n1=2 and n2=3.
  Array(InitializerList2D values)
      : Array(ToInt64Vector({values.size(), values.begin()->size()})) {
    int64 idx = 0;
    for (const auto& it1 : values) {
      for (const auto& it2 : it1) {
        values_[idx] = it2;
        ++idx;
      }
    }
    CHECK(idx == num_elements());
  }

  // Creates a 3D array from the given nested initializer list. The outer
  // initializer list is the first dimension, and so on.
  Array(InitializerList3D values)
      : Array(ToInt64Vector({values.size(), values.begin()->size(),
                             values.begin()->begin()->size()})) {
    int64 idx = 0;
    for (const auto& it1 : values) {
      for (const auto& it2 : it1) {
        for (const auto& it3 : it2) {
          values_[idx] = it3;
          ++idx;
        }
      }
    }
    CHECK(idx == num_elements());
  }

  // Creates a 4D array from the given nested initializer list. The outer
  // initializer list is the first dimension, and so on.
  Array(InitializerList4D values)
      : Array(ToInt64Vector({values.size(), values.begin()->size(),
                             values.begin()->begin()->size(),
                             values.begin()->begin()->begin()->size()})) {
    int64 idx = 0;
    for (const auto& it1 : values) {
      for (const auto& it2 : it1) {
        for (const auto& it3 : it2) {
          for (const auto& it4 : it3) {
            values_[idx] = it4;
            ++idx;
          }
        }
      }
    }
    CHECK(idx == num_elements());
  }

  Array(const Array<T>& other)
      : sizes_(other.sizes_), values_(new T[num_elements()]) {
    std::copy(&other.values_[0], &other.values_[0] + num_elements(),
              &values_[0]);
  }

  Array<T>& operator=(const Array<T>& other) {
    sizes_ = other.sizes_;
    values_.reset(new T[num_elements()]);
    std::copy(&other.values_[0], &other.values_[0] + num_elements(),
              &values_[0]);
    return *this;
  }

  // Fills the array with the specified value.
  void Fill(const T& value) {
    std::fill(&values_[0], &values_[0] + num_elements(), value);
  }

  // Fills the array with sequentially increasing values.
  void FillIota(const T& value) {
    std::iota(&values_[0], &values_[0] + num_elements(), value);
  }

  // Fills the array with the sequence i*multiplier for i=0,1,...
  void FillWithMultiples(const T& multiplier) {
    for (int64 i = 0; i < num_elements(); ++i) {
      values_[i] = i * multiplier;
    }
  }

  // Fills the array with random normal variables with the specified mean.
  void FillRandom(const T& value, const double mean = 0.0,
                  const int seed = 12345) {
    std::mt19937 g(seed);
    std::normal_distribution<double> distribution(mean,
                                                  static_cast<double>(value));
    for (int64 i = 0; i < num_elements(); ++i) {
      values_[i] = static_cast<T>(distribution(g));
    }
  }

  // Sets all the values in the array to values specified in the container.
  template <typename Container = std::initializer_list<T>>
  void SetValues(const Container& container) {
    CHECK_EQ(std::distance(std::begin(container), std::end(container)),
             num_elements());
    std::copy(std::begin(container), std::end(container), &values_[0]);
  }

  // Invokes a callback with the (indices, value_ptr) for each cell in the
  // array.
  void Each(std::function<void(tensorflow::gtl::ArraySlice<int64>, T*)> f) {
    std::vector<int64> index(sizes_.size());
    for (int64 i = 0; i < num_elements(); ++i, next_index(&index)) {
      f(index, &values_[i]);
    }
  }

  // Invokes a callback with the (indices, value) for each cell in the array.
  void Each(
      std::function<void(tensorflow::gtl::ArraySlice<int64>, T)> f) const {
    std::vector<int64> index(sizes_.size());
    for (int64 i = 0; i < num_elements(); ++i, next_index(&index)) {
      f(index, values_[i]);
    }
  }

  // Invokes a callback with the (indices, value_ptr) for each cell in the
  // array. If a callback returns a non-OK status, returns that else returns
  // Status::OK().
  Status EachStatus(
      std::function<Status(tensorflow::gtl::ArraySlice<int64>, T*)> f) {
    std::vector<int64> index(sizes_.size());
    for (int64 i = 0; i < num_elements(); ++i, next_index(&index)) {
      Status s = f(index, &values_[i]);
      if (!s.ok()) {
        return s;
      }
    }
    return Status::OK();
  }

  // Invokes a callback with the (indices, value) for each cell in the array.
  // If a callback returns a non-OK status, returns that else returns
  // Status::OK().
  Status EachStatus(
      std::function<Status(tensorflow::gtl::ArraySlice<int64>, T)> f) const {
    std::vector<int64> index(sizes_.size());
    for (int64 i = 0; i < num_elements(); ++i, next_index(&index)) {
      Status s = f(index, values_[i]);
      if (!s.ok()) {
        return s;
      }
    }
    return Status::OK();
  }

  // Returns the value at the cell specified by the indexes. The number of
  // arguments have to match with the number of dimensions for the array.
  //
  // The type trait is required to avoid this overload participating too
  // eagerly; a parameter pack can take zero or more elements, so we must
  // restrict this to only parameter packs that are all of integral type.
  template <typename... Dims>
  typename std::enable_if<array_impl::pack_is_integral<Dims...>::value,
                          const T&>::type
  operator()(Dims... dims) const {
    // We are using a std::array to avoid having to allocate memory in this
    // function for performance reasons.
    std::array<int64, sizeof...(dims)> indexes{{static_cast<int64>(dims)...}};
    return values_[calculate_index(indexes)];
  }

  // Returns the value at the cell specified by the indexes. The number of
  // arguments have to match with the number of dimensions for the array.
  template <typename... Dims>
  typename std::enable_if<array_impl::pack_is_integral<Dims...>::value,
                          T&>::type
  operator()(Dims... dims) {
    // We are using a std::array to avoid having to allocate memory in this
    // function for performance reasons.
    std::array<int64, sizeof...(dims)> indexes{{static_cast<int64>(dims)...}};
    return values_[calculate_index(indexes)];
  }

  // Returns the value at the cell specified by the indexes. The number of
  // arguments have to match with the number of dimensions for the array.
  const T& operator()(tensorflow::gtl::ArraySlice<int64> indexes) const {
    return values_[calculate_index(indexes)];
  }

  // Returns the value at the cell specified by the indexes. The number of
  // arguments have to match with the number of dimensions for the array.
  T& operator()(tensorflow::gtl::ArraySlice<int64> indexes) {
    return values_[calculate_index(indexes)];
  }

  // Low-level accessor for stuff like memcmp, handle with care. Returns pointer
  // to the underlying storage of the array (similarly to std::vector::data()).
  T* data() const {
    // TODO(tberghammer): Get rid of the const_cast. Currently it is needed
    // because the Eigen backend needs a non-const pointers even for reading
    // from the array.
    return const_cast<Array*>(this)->values_.get();
  }

  // Returns the size of the dimension at the given index.
  int64 dim(int64 n) const {
    CHECK(n < sizes_.size());
    return sizes_[n];
  }

  // Returns a vector containing the dimensions of the array.
  const std::vector<int64>& dimensions() const { return sizes_; }

  int64 num_dimensions() const { return sizes_.size(); }

  // Returns the total number of elements in the array.
  int64 num_elements() const {
    return std::accumulate(sizes_.begin(), sizes_.end(), 1,
                           std::multiplies<int64>());
  }

  const T* begin() const { return &values_[0]; }
  T* begin() { return &values_[0]; }
  const T* end() const { return &values_[num_elements()]; }
  T* end() { return &values_[num_elements()]; }

  bool operator==(const Array<T>& other) const {
    if (sizes_.size() != other.sizes_.size()) {
      return false;
    }
    for (int64 i = 0; i < sizes_.size(); ++i) {
      if (sizes_[i] != other.sizes_[i]) {
        return false;
      }
    }
    for (int64 i = 0; i < num_elements(); ++i) {
      if (values_[i] != other.values_[i]) {
        return false;
      }
    }
    return true;
  }

  bool operator!=(const Array<T>& other) const { return !(*this == other); }

  // Performs the equivalent of a slice operation on this array.
  Array<T> Slice(tensorflow::gtl::ArraySlice<int64> starts,
                 tensorflow::gtl::ArraySlice<int64> limits) const {
    CHECK_EQ(starts.size(), num_dimensions());
    CHECK_EQ(limits.size(), num_dimensions());

    std::vector<int64> sizes;
    std::transform(starts.begin(), starts.end(), limits.begin(),
                   std::back_inserter(sizes),
                   [](int64 start, int64 limit) { return limit - start; });
    Array<T> result(sizes);

    std::vector<int64> index(sizes_.size());
    int64 slice_i = 0;
    for (int64 i = 0; i < num_elements(); ++i, next_index(&index)) {
      if (array_impl::all_inside_range(index, starts, limits)) {
        // Even though the bounds of result are different to our bounds, we're
        // iterating in the same order. So we can simply write successive linear
        // indices instead of recalculating a multi-dimensional index.
        result.values_[slice_i++] = values_[i];
      }
    }
    return result;
  }

  // Performs the equivalent of a DynamicUpdateSlice in-place on this array.
  void UpdateSlice(const Array<T>& from,
                   tensorflow::gtl::ArraySlice<int64> start_indices) {
    CHECK_EQ(from.num_dimensions(), num_dimensions());
    std::vector<int64> limit_indices;
    std::transform(start_indices.begin(), start_indices.end(),
                   from.dimensions().begin(), std::back_inserter(limit_indices),
                   std::plus<int64>{});
    std::vector<int64> index(sizes_.size());
    int64 from_i = 0;
    for (int64 i = 0; i < num_elements(); ++i, next_index(&index)) {
      if (array_impl::all_inside_range(index, start_indices, limit_indices)) {
        // Even though the bounds of from are different to our bounds, we're
        // iterating in the same order. So we can simply write successive linear
        // indices instead of recalculating a multi-dimensional index.
        values_[i] = from.values_[from_i++];
      }
    }
  }

  // Performs an in-place reshape, modifying the dimensions but not the
  // underlying data.
  void Reshape(tensorflow::gtl::ArraySlice<int64> new_dimensions) {
    int64 old_num_elements = num_elements();
    sizes_ = std::vector<int64>(new_dimensions.begin(), new_dimensions.end());
    CHECK_EQ(num_elements(), old_num_elements);
  }

  // Returns a string representation of the array suitable for debugging.
  string ToString() const {
    std::vector<string> pieces;
    std::vector<int64> index(sizes_.size());
    do {
      // Emit leading spaces and opening square brackets
      if (index.back() == 0) {
        for (int64 i = sizes_.size() - 1; i >= 0; --i) {
          if (i == 0 || index[i - 1] != 0) {
            for (int64 j = 0; j < sizes_.size(); ++j) {
              pieces.push_back(j < i ? " " : "[");
            }
            break;
          }
        }
      }

      pieces.push_back(
          tensorflow::strings::AlphaNum(values_[calculate_index(index)])
              .data());

      // Emit comma if it isn't the last element
      if (index.back() != sizes_.back() - 1) {
        pieces.push_back(", ");
      }

      // Emit closing square brackets
      for (int64 i = sizes_.size() - 1; i >= 0; --i) {
        if (index[i] != sizes_[i] - 1) {
          break;
        }
        pieces.push_back("]");
        if (i != 0 && index[i - 1] != sizes_[i - 1] - 1) {
          pieces.push_back(",\n");
        }
      }
    } while (next_index(&index));
    return tensorflow::str_util::Join(pieces, "");
  }

 private:
  // Converts an initializer_list of type U to a vector of type int64. Used by
  // the initializer list based constructors to convert the size type into int64
  // to be passed to the size based constructor.
  template <typename U>
  static std::vector<int64> ToInt64Vector(
      const std::initializer_list<U>& data) {
    return std::vector<int64>(data.begin(), data.end());
  }

  // Returns the linear index from the list of per-dimension indexes. Function
  // is templated so can be used with an std::array from operator() to avoid
  // memory allocation.
  template <typename U>
  int64 calculate_index(const U& indexes) const {
    CHECK_EQ(sizes_.size(), indexes.size());
    int64 index = 0;
    for (int64 i = 0; i < sizes_.size(); ++i) {
      index *= sizes_[i];
      index += indexes[i];
    }
    return index;
  }

  // Advances the specified set of indexes and returns true if we haven't
  // wrapped around (i.e. result isn't {0, 0, ...}).
  bool next_index(std::vector<int64>* index) const {
    CHECK_EQ(index->size(), sizes_.size());
    for (int64 i = sizes_.size() - 1; i >= 0; --i) {
      (*index)[i]++;
      if ((*index)[i] < sizes_[i]) {
        return true;
      }
      (*index)[i] = 0;
    }
    return false;
  }

  std::vector<int64> sizes_;
  std::unique_ptr<T[]> values_;
};

}  // namespace xla

#endif  // TENSORFLOW_COMPILER_XLA_ARRAY_H_