aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/tf2xla/kernels/shape_op.cc
blob: c8a0f31a0375abacaca26688a23f4835e11c692e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// XLA-specific Shape Ops.

#include "tensorflow/compiler/tf2xla/kernels/shape_util.h"
#include "tensorflow/compiler/tf2xla/type_util.h"
#include "tensorflow/compiler/tf2xla/xla_helpers.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/core/framework/kernel_def_builder.h"
#include "tensorflow/core/kernels/bounds_check.h"

namespace tensorflow {
namespace {

class ShapeOp : public XlaOpKernel {
 public:
  explicit ShapeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {
    OP_REQUIRES_OK(ctx, ctx->GetAttr("out_type", &out_dtype_));
  }

  void Compile(XlaOpKernelContext* ctx) override {
    const TensorShape input_shape = ctx->InputShape(0);
    Tensor shape_constant(out_dtype_, TensorShape({input_shape.dims()}));
    OP_REQUIRES_OK(ctx, TensorShapeToConstant(input_shape, &shape_constant));
    ctx->SetConstantOutput(0, shape_constant);
  }

 private:
  DataType out_dtype_;
};

REGISTER_XLA_OP(Name("Shape").CompilationOnly().IsMetadataOp(), ShapeOp);

class ShapeNOp : public XlaOpKernel {
 public:
  explicit ShapeNOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {
    OP_REQUIRES_OK(ctx, ctx->GetAttr("out_type", &out_dtype_));
  }

  void Compile(XlaOpKernelContext* ctx) override {
    for (int i = 0; i < ctx->num_inputs(); ++i) {
      const TensorShape input_shape = ctx->InputShape(i);
      Tensor shape_constant(out_dtype_, TensorShape({input_shape.dims()}));
      OP_REQUIRES_OK(ctx, TensorShapeToConstant(input_shape, &shape_constant));
      ctx->SetConstantOutput(i, shape_constant);
    }
  }

  bool IsExpensive() override { return false; }

 private:
  DataType out_dtype_;
};
REGISTER_XLA_OP(Name("ShapeN").CompilationOnly().IsMetadataOp(), ShapeNOp);

class RankOp : public XlaOpKernel {
 public:
  explicit RankOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}

  void Compile(XlaOpKernelContext* ctx) override {
    const TensorShape input_shape = ctx->InputShape(0);
    const int rank = input_shape.dims();
    Tensor rank_constant(DT_INT32, TensorShape({}));
    rank_constant.scalar<int32>()() = rank;

    ctx->SetConstantOutput(0, rank_constant);
  }
};

REGISTER_XLA_OP(Name("Rank").CompilationOnly().IsMetadataOp(), RankOp);

class SizeOp : public XlaOpKernel {
 public:
  explicit SizeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}

  void Compile(XlaOpKernelContext* ctx) override {
    const TensorShape input_shape = ctx->InputShape(0);
    const int64 size = input_shape.num_elements();
    OP_REQUIRES(ctx, FastBoundsCheck(size, std::numeric_limits<int32>::max()),
                errors::InvalidArgument("Size does not work for tensors > "
                                        "int32 max."));
    Tensor size_constant(DT_INT32, TensorShape({}));
    size_constant.scalar<int32>()() = static_cast<int32>(size);

    ctx->SetConstantOutput(0, size_constant);
  }
};

REGISTER_XLA_OP(Name("Size").CompilationOnly().IsMetadataOp(), SizeOp);

class ExpandDimsOp : public XlaOpKernel {
 public:
  explicit ExpandDimsOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}

  void Compile(XlaOpKernelContext* ctx) override {
    const TensorShape input_shape = ctx->InputShape(0);
    const TensorShape dim_shape = ctx->InputShape(1);

    // TODO(phawkins): the standard implementation of ExpandDimsOp seems to
    // accept legacy scalars, even when they should be forbidden by the graphdef
    // version.
    OP_REQUIRES(ctx, dim_shape.num_elements() == 1,
                errors::InvalidArgument(absl::StrCat(
                    "dim input to ExpandDims must be a scalar; got ",
                    dim_shape.DebugString())));

    xla::Literal literal;
    OP_REQUIRES_OK(ctx, ctx->ConstantInputReshaped(1, {1}, &literal));

    int dim = literal.data<int32>()[0];

    OP_REQUIRES(ctx,
                (dim >= -1 - input_shape.dims() && dim <= input_shape.dims()),
                errors::InvalidArgument("Tried to expand dim index ", dim,
                                        " for tensor with ", input_shape.dims(),
                                        " dimensions."));

    auto existing_dims = input_shape.dim_sizes();
    // Safe - # elements in tensor dims bounded.
    const int existing_dims_size = static_cast<int>(existing_dims.size());
    std::vector<int64> new_shape(existing_dims_size);
    for (size_t i = 0; i < new_shape.size(); ++i) {
      new_shape[i] = existing_dims[i];
    }

    // We emulate numpy's interpretation of the dim axis when
    // -input.dims() >= dim <= input.dims().
    if (dim < 0) {
      dim += existing_dims.size() + 1;
    }

    // Clamp to the end if needed.
    dim = std::min<int32>(dim, existing_dims_size);
    new_shape.emplace(new_shape.begin() + dim, 1);

    ctx->SetOutput(0, xla::Reshape(ctx->Input(0), new_shape));
  }
};
REGISTER_XLA_OP(Name("ExpandDims").CompileTimeConstInput("dim"), ExpandDimsOp);

class SqueezeOp : public XlaOpKernel {
 public:
  explicit SqueezeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {
    std::vector<int32> squeeze_dims;
    OP_REQUIRES_OK(ctx, ctx->GetAttr("squeeze_dims", &squeeze_dims));
    squeeze_dims_.insert(squeeze_dims.begin(), squeeze_dims.end());
  }

  void Compile(XlaOpKernelContext* ctx) override {
    const TensorShape input_shape = ctx->InputShape(0);
    auto existing_dims = input_shape.dim_sizes();
    int existing_dims_size = input_shape.dims();
    std::vector<int64> new_shape;

    std::unordered_set<int32> wrapped_squeeze_dims;
    wrapped_squeeze_dims.reserve(squeeze_dims_.size());
    // Validate squeeze dims against the input.
    for (int32 dim : squeeze_dims_) {
      OP_REQUIRES(ctx, (dim >= -input_shape.dims() && dim < input_shape.dims()),
                  errors::InvalidArgument("Tried to squeeze dim index ", dim,
                                          " for tensor with ",
                                          input_shape.dims(), " dimensions."));
      // If dim is < 0, we wrap around (-1 means the last element).
      if (dim < 0) {
        dim = existing_dims_size + dim;
      }

      wrapped_squeeze_dims.insert(dim);
    }

    for (int i = 0; i < existing_dims_size; ++i) {
      auto existing_dim = existing_dims[i];

      // If squeeze_set is non-empty, only squeeze those dimensions.
      if (!wrapped_squeeze_dims.empty()) {
        if (wrapped_squeeze_dims.count(i) > 0) {
          OP_REQUIRES(ctx, existing_dim == 1,
                      errors::InvalidArgument(
                          "Tried to explicitly squeeze dimension ", i,
                          " but dimension was not 1: ", existing_dim));
        } else {
          // This dimension is not being squeezed.
          new_shape.push_back(existing_dim);
        }
      } else {
        // Copy over all non-1-length dimensions.
        if (existing_dim != 1) {
          new_shape.push_back(existing_dim);
        }
      }
    }

    ctx->SetOutput(0, xla::Reshape(ctx->Input(0), new_shape));
  }

 private:
  std::unordered_set<int32> squeeze_dims_;
};

REGISTER_XLA_OP(Name("Squeeze"), SqueezeOp);

class ZerosLikeOp : public XlaOpKernel {
 public:
  explicit ZerosLikeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}

  void Compile(XlaOpKernelContext* ctx) override {
    const TensorShape input_shape = ctx->InputShape(0);

    auto zero = XlaHelpers::Zero(ctx->builder(), input_type(0));
    ctx->SetOutput(0, xla::Broadcast(zero, input_shape.dim_sizes()));
  }
};

REGISTER_XLA_OP(Name("ZerosLike"), ZerosLikeOp);

class OnesLikeOp : public XlaOpKernel {
 public:
  explicit OnesLikeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}

  void Compile(XlaOpKernelContext* ctx) override {
    const TensorShape input_shape = ctx->InputShape(0);

    auto one = XlaHelpers::One(ctx->builder(), input_type(0));
    ctx->SetOutput(0, xla::Broadcast(one, input_shape.dim_sizes()));
  }
};

REGISTER_XLA_OP(Name("OnesLike"), OnesLikeOp);

}  // namespace
}  // namespace tensorflow