aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/tf2xla/kernels/conv_op_helpers.cc
blob: c9a1be494066e4f935a1d818bc86c86333e34fae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// XLA-specific Ops for 2D convolution.

#include "tensorflow/compiler/tf2xla/kernels/conv_op_helpers.h"
#include "absl/types/span.h"
#include "tensorflow/compiler/tf2xla/shape_util.h"
#include "tensorflow/compiler/tf2xla/type_util.h"
#include "tensorflow/compiler/tf2xla/xla_helpers.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/compiler/xla/client/lib/arithmetic.h"
#include "tensorflow/compiler/xla/client/lib/constants.h"
#include "tensorflow/compiler/xla/client/lib/numeric.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/core/framework/node_def_util.h"
#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/kernels/conv_grad_ops.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"

namespace tensorflow {
namespace {

// Returns the expanded size of a filter used for depthwise convolution.
// If `shape` is [H, W, ..., M, N] returns [H, W, ..., M, M*N].
xla::Shape ExpandedFilterShapeForDepthwiseConvolution(const xla::Shape& shape) {
  int num_dims = shape.dimensions_size();
  CHECK_GE(num_dims, 2);  // Crash OK
  xla::Shape expanded_shape = shape;
  expanded_shape.set_dimensions(
      num_dims - 1,
      shape.dimensions(num_dims - 2) * shape.dimensions(num_dims - 1));
  return expanded_shape;
}

// Create a mask for depthwise convolution that will make a normal convolution
// produce the same results as a depthwise convolution. For a [2, 2, 3, 2]
// depthwise filter this returns a [2, 2, 3, 6] tensor
//   1 1 0 0 0 0   1 1 0 0 0 0
//   0 0 1 1 0 0   0 0 1 1 0 0
//   0 0 0 0 1 1   0 0 0 0 1 1
//
//   1 1 0 0 0 0   1 1 0 0 0 0
//   0 0 1 1 0 0   0 0 1 1 0 0
//   0 0 0 0 1 1   0 0 0 0 1 1
//
// The first step is to create a one tensor, A, that is [3]
//   0 1 2
//
// and another tensor, B,  that is [3 * 2]
//   0 1 2 3 4 5
//
// and divide B it by 2 to get
//   0 0 1 1 2 2
//
// then we broadcast the B to [2, 2, 3, 3 * 2]
//   0 0 1 1 2 2   0 0 1 1 2 2
//   0 0 1 1 2 2   0 0 1 1 2 2
//   0 0 1 1 2 2   0 0 1 1 2 2
//
//   0 0 1 1 2 2   0 0 1 1 2 2
//   0 0 1 1 2 2   0 0 1 1 2 2
//   0 0 1 1 2 2   0 0 1 1 2 2
//
// Finally compare A and broadcasted B in dimension 2 amd return the result at
// the beginning of the comment.
xla::XlaOp CreateExpandedFilterMask(const xla::Shape& filter_shape,
                                    xla::XlaBuilder* builder) {
  xla::Shape expanded_filter_shape =
      ExpandedFilterShapeForDepthwiseConvolution(filter_shape);
  int64 depthwise_multiplier =
      filter_shape.dimensions(filter_shape.dimensions_size() - 1);
  int64 input_feature =
      filter_shape.dimensions(filter_shape.dimensions_size() - 2);

  // Create a M sized linspace and an M*N sized linspace that will be
  // broadcasted into perpendicular dimensions and compared.
  xla::XlaOp input_feature_iota = xla::Iota(builder, xla::S32, input_feature);
  xla::XlaOp expanded_feature_iota =
      xla::Iota(builder, xla::S32, input_feature * depthwise_multiplier);

  // Divide the M*N sized linspace by the depthwise_multiplier to create
  // [0 0 1 1 2 2] in the example in the function comment.
  expanded_feature_iota =
      xla::Div(expanded_feature_iota,
               XlaHelpers::IntegerLiteral(builder, DataType::DT_INT32,
                                          depthwise_multiplier));

  // Broadcast the N*M linspace to [H, W, ..., M, M*N].
  std::vector<int64> expanded_feature_broadcast_dims(
      expanded_filter_shape.dimensions().begin(),
      expanded_filter_shape.dimensions().end());
  expanded_feature_broadcast_dims.pop_back();
  auto broadcasted_expanded_feature_iota =
      xla::Broadcast(expanded_feature_iota, expanded_feature_broadcast_dims);

  // Compare the broadcasted linspace to the input feature linspace in the
  // input feature dimension to create a diagonal predicate.
  return xla::Eq(broadcasted_expanded_feature_iota, input_feature_iota,
                 {expanded_filter_shape.dimensions_size() - 2});
}

// Reshapes a filter of shape [H, W, ..., M, N] to [H, W, ..., 1, M*N]. Used to
// build a depthwise convolution.
xla::XlaOp ReshapeFilterForDepthwiseConvolution(const xla::Shape& filter_shape,
                                                const xla::XlaOp& filter) {
  int64 input_feature_dim = filter_shape.dimensions_size() - 2;
  int64 output_feature_dim = filter_shape.dimensions_size() - 1;
  int64 depthwise_multiplier = filter_shape.dimensions(output_feature_dim);
  int64 input_feature = filter_shape.dimensions(input_feature_dim);

  // Create a [H, W, ..., 1, N*M] reshape of the filter.
  xla::Shape implicit_broadcast_filter_shape = filter_shape;
  implicit_broadcast_filter_shape.set_dimensions(input_feature_dim, 1);
  implicit_broadcast_filter_shape.set_dimensions(
      output_feature_dim, depthwise_multiplier * input_feature);
  return xla::Reshape(
      filter, xla::AsInt64Slice(implicit_broadcast_filter_shape.dimensions()));
}

// Reduces the results of the convolution with an expanded filter to the
// non-expanded filter.
xla::XlaOp ContractFilterForDepthwiseBackprop(const xla::Shape& filter_shape,
                                              const xla::XlaOp& filter_backprop,
                                              xla::XlaBuilder* builder) {
  auto masked_expanded_filter =
      xla::Select(CreateExpandedFilterMask(filter_shape, builder),
                  filter_backprop, xla::ZerosLike(filter_backprop));

  auto elem_type = filter_shape.element_type();
  return xla::Reshape(
      // This reduce does not need inputs to be converted with
      // XlaHelpers::SumAccumulationType() since the select above guarantees
      // that only one element is non zero, so there cannot be accumulated
      // precision error.
      xla::Reduce(masked_expanded_filter, xla::Zero(builder, elem_type),
                  CreateScalarAddComputation(elem_type, builder),
                  {filter_shape.dimensions_size() - 2}),
      xla::AsInt64Slice(filter_shape.dimensions()));
}

// Performs some basic checks on ConvOpAttrs that are true for all kinds of XLA
// convolutions (as currently implemented).
Status CheckConvAttrs(const ConvOpAttrs& attrs) {
  const int num_dims = attrs.num_spatial_dims + 2;
  if (attrs.strides.size() != num_dims) {
    return errors::InvalidArgument("Sliding window strides field must specify ",
                                   num_dims, " dimensions");
  }
  int batch_dim = GetTensorBatchDimIndex(num_dims, attrs.data_format);
  int feature_dim = GetTensorFeatureDimIndex(num_dims, attrs.data_format);
  if (attrs.strides[batch_dim] != 1 || attrs.strides[feature_dim] != 1) {
    return errors::Unimplemented(
        "Current implementation does not yet support strides in the batch and "
        "depth dimensions.");
  }
  if (attrs.dilations.size() != num_dims) {
    return errors::InvalidArgument("Dilations field must specify ", num_dims,
                                   " dimensions");
  }
  if (attrs.dilations[batch_dim] != 1 || attrs.dilations[feature_dim] != 1) {
    return errors::Unimplemented(
        "Current implementation does not support dilations in the batch and "
        "depth dimensions.");
  }
  for (int i = 0; i < attrs.num_spatial_dims; ++i) {
    int input_dim = GetTensorSpatialDimIndex(num_dims, attrs.data_format, i);
    if (attrs.dilations[input_dim] < 1) {
      return errors::Unimplemented("Dilation values must be positive; ", i,
                                   "th spatial dimension had dilation ",
                                   attrs.dilations[input_dim]);
    }
  }
  return Status::OK();
}

// Wrapper around ConvBackpropComputeDimensions that converts from XLA shapes
// to TensorShapes.
Status ConvBackpropComputeDimensionsV2XlaShapes(
    StringPiece label, int num_spatial_dims, const xla::Shape& input_shape,
    const xla::Shape& filter_shape, const xla::Shape& out_backprop_shape,
    absl::Span<const int32> dilations, const std::vector<int32>& strides,
    Padding padding, TensorFormat data_format, ConvBackpropDimensions* dims) {
  TensorShape input_tensor_shape, filter_tensor_shape,
      out_backprop_tensor_shape;
  TF_RETURN_IF_ERROR(XLAShapeToTensorShape(input_shape, &input_tensor_shape));
  TF_RETURN_IF_ERROR(XLAShapeToTensorShape(filter_shape, &filter_tensor_shape));
  TF_RETURN_IF_ERROR(
      XLAShapeToTensorShape(out_backprop_shape, &out_backprop_tensor_shape));
  return ConvBackpropComputeDimensionsV2(
      label, num_spatial_dims, input_tensor_shape, filter_tensor_shape,
      out_backprop_tensor_shape, dilations, strides, padding, data_format,
      dims);
}

}  // anonymous namespace

xla::StatusOr<ConvOpAttrs> ConvOpAttrs::Create(int num_spatial_dims,
                                               bool depthwise,
                                               OpKernelConstruction* ctx) {
  ConvOpAttrs attrs;
  attrs.num_spatial_dims = num_spatial_dims;
  attrs.depthwise = depthwise;
  TF_RETURN_IF_ERROR(ctx->GetAttr("dilations", &attrs.dilations));
  TF_RETURN_IF_ERROR(ctx->GetAttr("strides", &attrs.strides));
  TF_RETURN_IF_ERROR(ctx->GetAttr("padding", &attrs.padding));

  string data_format;
  TF_RETURN_IF_ERROR(ctx->GetAttr("data_format", &data_format));
  if (!FormatFromString(data_format, &attrs.data_format)) {
    return errors::InvalidArgument("Invalid data format: ", data_format);
  }

  return attrs;
}

xla::StatusOr<xla::XlaOp> MakeXlaForwardConvOp(StringPiece /*type_string*/,
                                               xla::XlaOp conv_input,
                                               xla::XlaOp filter,
                                               const ConvOpAttrs& attrs) {
  TF_RETURN_IF_ERROR(CheckConvAttrs(attrs));

  auto* builder = conv_input.builder();
  TF_ASSIGN_OR_RETURN(xla::Shape input_shape, builder->GetShape(conv_input));
  // Filter has the form [filter_rows, filter_cols, ..., in_depth, out_depth]
  TF_ASSIGN_OR_RETURN(xla::Shape filter_shape, builder->GetShape(filter));

  // For 2D convolution, there should be 4 dimensions.
  int num_dims = attrs.num_spatial_dims + 2;
  if (input_shape.dimensions_size() != num_dims) {
    return errors::InvalidArgument("input must be ", num_dims, "-dimensional",
                                   input_shape.DebugString());
  }
  if (filter_shape.dimensions_size() != num_dims) {
    return errors::InvalidArgument(
        "filter must be ", num_dims,
        "-dimensional: ", filter_shape.DebugString());
  }

  // The last two dimensions of the filter are the input and output shapes.
  int batch_dim = GetTensorBatchDimIndex(num_dims, attrs.data_format);
  int feature_dim = GetTensorFeatureDimIndex(num_dims, attrs.data_format);

  int64 in_depth = filter_shape.dimensions(attrs.num_spatial_dims);
  // The 'C' dimension for input is in_depth. It must be the same as
  // the filter's in_depth.
  if (in_depth != input_shape.dimensions(feature_dim)) {
    return errors::InvalidArgument(
        "input and filter must have the same depth: ", in_depth, " vs ",
        input_shape.dimensions(feature_dim));
  }

  if (attrs.depthwise) {
    filter = ReshapeFilterForDepthwiseConvolution(filter_shape, filter);
  }

  xla::ConvolutionDimensionNumbers dims;
  std::vector<int64> window_strides(attrs.num_spatial_dims);
  std::vector<int64> lhs_dilation(attrs.num_spatial_dims, 1);
  std::vector<int64> rhs_dilation(attrs.num_spatial_dims);
  std::vector<std::pair<int64, int64>> padding(attrs.num_spatial_dims);

  dims.set_input_batch_dimension(batch_dim);
  dims.set_output_batch_dimension(batch_dim);
  dims.set_input_feature_dimension(feature_dim);
  dims.set_output_feature_dimension(feature_dim);
  dims.set_kernel_input_feature_dimension(attrs.num_spatial_dims);
  dims.set_kernel_output_feature_dimension(attrs.num_spatial_dims + 1);

  for (int i = 0; i < attrs.num_spatial_dims; ++i) {
    const int64 dim = GetTensorSpatialDimIndex(num_dims, attrs.data_format, i);
    dims.add_input_spatial_dimensions(dim);
    dims.add_kernel_spatial_dimensions(i);
    dims.add_output_spatial_dimensions(dim);
    window_strides[i] = attrs.strides.at(dim);
    rhs_dilation[i] = attrs.dilations.at(dim);

    int64 unused_output_size;
    TF_RETURN_IF_ERROR(GetWindowedOutputSizeVerboseV2(
        input_shape.dimensions(dim), filter_shape.dimensions(i),
        rhs_dilation[i], window_strides[i], attrs.padding, &unused_output_size,
        &padding[i].first, &padding[i].second));
  }

  return xla::ConvGeneralDilated(
      conv_input, filter, window_strides, padding, lhs_dilation, rhs_dilation,
      dims, /*feature_group_count=*/attrs.depthwise ? in_depth : 1);
}

xla::StatusOr<xla::XlaOp> MakeXlaBackpropInputConvOp(
    StringPiece type_string, const xla::Shape& input_shape, xla::XlaOp filter,
    xla::XlaOp out_backprop, const ConvOpAttrs& attrs) {
  TF_RETURN_IF_ERROR(CheckConvAttrs(attrs));

  int num_dims = attrs.num_spatial_dims + 2;
  int batch_dim = GetTensorBatchDimIndex(num_dims, attrs.data_format);
  int feature_dim = GetTensorFeatureDimIndex(num_dims, attrs.data_format);

  auto* builder = filter.builder();
  TF_ASSIGN_OR_RETURN(xla::Shape filter_shape, builder->GetShape(filter));
  TF_ASSIGN_OR_RETURN(xla::Shape out_backprop_shape,
                      builder->GetShape(out_backprop));

  xla::Shape expanded_filter_shape =
      attrs.depthwise ? ExpandedFilterShapeForDepthwiseConvolution(filter_shape)
                      : filter_shape;
  // Reuse dimension computation logic from conv_grad_ops.cc.
  ConvBackpropDimensions dims;
  TF_RETURN_IF_ERROR(ConvBackpropComputeDimensionsV2XlaShapes(
      type_string, attrs.num_spatial_dims, input_shape, expanded_filter_shape,
      out_backprop_shape, attrs.dilations, attrs.strides, attrs.padding,
      attrs.data_format, &dims));

  // The input gradients are computed by a convolution of the output
  // gradients and the filter, with some appropriate padding. See the
  // comment at the top of conv_grad_ops.h for details.

  xla::ConvolutionDimensionNumbers dnums;
  dnums.set_input_batch_dimension(batch_dim);
  dnums.set_output_batch_dimension(batch_dim);
  dnums.set_input_feature_dimension(feature_dim);
  dnums.set_output_feature_dimension(feature_dim);

  // TF filter shape is [ H, W, ..., inC, outC ]
  // Transpose the input and output features for computing the gradient.
  dnums.set_kernel_input_feature_dimension(attrs.num_spatial_dims + 1);
  dnums.set_kernel_output_feature_dimension(attrs.num_spatial_dims);

  std::vector<int64> kernel_spatial_dims(attrs.num_spatial_dims);
  std::vector<std::pair<int64, int64>> padding(attrs.num_spatial_dims);
  std::vector<int64> lhs_dilation(attrs.num_spatial_dims);
  std::vector<int64> rhs_dilation(attrs.num_spatial_dims);
  std::vector<int64> ones(attrs.num_spatial_dims, 1);
  for (int i = 0; i < attrs.num_spatial_dims; ++i) {
    int64 dim = GetTensorSpatialDimIndex(num_dims, attrs.data_format, i);
    dnums.add_input_spatial_dimensions(dim);
    dnums.add_kernel_spatial_dimensions(i);
    dnums.add_output_spatial_dimensions(dim);

    kernel_spatial_dims[i] = i;
    padding[i] = {dims.spatial_dims[i].pad_before,
                  dims.spatial_dims[i].pad_after};
    lhs_dilation[i] = dims.spatial_dims[i].stride;
    rhs_dilation[i] = attrs.dilations[dim];
  }

  // Mirror the filter in the spatial dimensions.
  xla::XlaOp mirrored_weights = xla::Rev(filter, kernel_spatial_dims);

  // activation gradients
  //   = gradients (with padding and dilation) <conv> mirrored_weights
  return xla::ConvGeneralDilated(
      out_backprop, mirrored_weights, /*window_strides=*/ones, padding,
      lhs_dilation, rhs_dilation, dnums,
      /*feature_group_count=*/
      attrs.depthwise ? out_backprop_shape.dimensions(feature_dim) /
                            filter_shape.dimensions(attrs.num_spatial_dims + 1)
                      : 1);
}

xla::StatusOr<xla::XlaOp> MakeXlaBackpropFilterConvOp(
    StringPiece type_string, xla::XlaOp activations,
    const xla::Shape& filter_shape, xla::XlaOp gradients,
    const ConvOpAttrs& attrs) {
  TF_RETURN_IF_ERROR(CheckConvAttrs(attrs));

  auto* builder = activations.builder();
  TF_ASSIGN_OR_RETURN(xla::Shape activations_shape,
                      builder->GetShape(activations));
  TF_ASSIGN_OR_RETURN(xla::Shape out_backprop_shape,
                      builder->GetShape(gradients));
  const xla::Shape expanded_filter_shape =
      attrs.depthwise ? ExpandedFilterShapeForDepthwiseConvolution(filter_shape)
                      : filter_shape;

  // Reuse dimension computation logic from conv_grad_ops.cc.
  ConvBackpropDimensions dims;
  TF_RETURN_IF_ERROR(ConvBackpropComputeDimensionsV2XlaShapes(
      type_string, attrs.num_spatial_dims, activations_shape,
      expanded_filter_shape, out_backprop_shape, attrs.dilations, attrs.strides,
      attrs.padding, attrs.data_format, &dims));

  // The filter gradients are computed by a convolution of the input
  // activations and the output gradients, with some appropriate padding.
  // See the comment at the top of conv_grad_ops.h for details.

  xla::ConvolutionDimensionNumbers dnums;

  // The activations (inputs) form the LHS of the convolution.
  // Activations have shape: [batch, in_rows, in_cols, ..., in_depth]
  // For the gradient computation, we flip the roles of the batch and
  // feature dimensions.
  // Each spatial entry has size in_depth * batch

  // The last two dimensions of the filter are the input and output shapes.
  int num_dims = attrs.num_spatial_dims + 2;
  int n_dim = GetTensorBatchDimIndex(num_dims, attrs.data_format);
  int c_dim = GetTensorFeatureDimIndex(num_dims, attrs.data_format);

  // Swap n_dim and c_dim in the activations.
  dnums.set_input_batch_dimension(c_dim);
  dnums.set_input_feature_dimension(n_dim);

  // The gradients become the RHS of the convolution.
  // The gradients have shape [batch, out_rows, out_cols, ..., out_depth]
  // where the batch becomes the input feature for the convolution.
  dnums.set_kernel_input_feature_dimension(n_dim);
  dnums.set_kernel_output_feature_dimension(c_dim);

  std::vector<std::pair<int64, int64>> padding(attrs.num_spatial_dims);
  std::vector<int64> rhs_dilation(attrs.num_spatial_dims);
  std::vector<int64> window_strides(attrs.num_spatial_dims);
  std::vector<int64> ones(attrs.num_spatial_dims, 1);

  // Tensorflow filter shape is [ H, W, ..., inC, outC ].
  for (int i = 0; i < attrs.num_spatial_dims; ++i) {
    dnums.add_output_spatial_dimensions(i);
  }
  dnums.set_output_batch_dimension(attrs.num_spatial_dims);
  dnums.set_output_feature_dimension(attrs.num_spatial_dims + 1);

  for (int i = 0; i < attrs.num_spatial_dims; ++i) {
    int64 dim = GetTensorSpatialDimIndex(num_dims, attrs.data_format, i);
    dnums.add_input_spatial_dimensions(dim);
    dnums.add_kernel_spatial_dimensions(dim);

    // We will also need to pad the input with zeros such that after the
    // convolution, we get the right size for the filter.
    // The padded_in_rows should be such that when we convolve this with the
    // expanded_out_rows as a filter, we should get filter_rows back.
    //
    const int64 padded_in_size =
        dims.spatial_dims[i].expanded_output_size +
        (dims.spatial_dims[i].filter_size - 1) * attrs.dilations[dim];

    // However it can be smaller than input_rows: in this
    // case it means some of the inputs are not used.
    //
    // An example is to have input_cols = 3, filter_cols = 2 and stride = 2:
    //
    // INPUT =  [ A  B  C ]
    //
    // FILTER = [ x y ]
    //
    // and the output will only have one column: a = A * x + B * y
    //
    // and input "C" is not used at all.
    //
    // We apply negative padding in this case.
    const int64 pad_total = padded_in_size - dims.spatial_dims[i].input_size;

    // + For the VALID padding, we don't pad anything on the top/left side
    //   and pad the bottom/right side with the remaining space.
    // + For the SAME padding, we pad top/left side the same as bottom/right
    //   side.
    //
    // In addition, if the padded input size is smaller than the input size,
    // we need to ignore some training elements of the input. We do this by
    // applying negative padding on the right/bottom.
    const int64 pad_before =
        attrs.padding == Padding::SAME ? std::max<int64>(pad_total / 2, 0) : 0;

    padding[i] = {pad_before, pad_total - pad_before};
    rhs_dilation[i] = dims.spatial_dims[i].stride;
    window_strides[i] = attrs.dilations[dim];
  }

  // Besides padding the input, we will also expand output_rows to
  //    expanded_out_rows = (output_rows - 1) * stride + 1
  // with zeros in between:
  //
  //      a . . . b . . . c . . . d . . . e
  //
  // This is done by specifying the window dilation factors in the
  // convolution HLO below.
  auto filter_backprop =
      xla::ConvGeneralDilated(activations, gradients, window_strides, padding,
                              /*lhs_dilation=*/ones, rhs_dilation, dnums);

  if (attrs.depthwise) {
    filter_backprop = ContractFilterForDepthwiseBackprop(
        filter_shape, filter_backprop, activations.builder());
  }

  return filter_backprop;
}

}  // namespace tensorflow