aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/tests/stateless_random_ops_test.py
blob: e8741bc468585ff9fb049dcd87700f8048d74026 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for stateless random-number generation ops."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import numpy as np

from tensorflow.compiler.tests import xla_test
from tensorflow.contrib import stateless
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops.distributions import special_math
from tensorflow.python.platform import test


class StatelessRandomOpsTest(xla_test.XLATestCase):
  """Test cases for stateless random-number generator operators."""

  def _random_types(self):
    return self.float_types & {dtypes.float32, dtypes.float64}

  def testDeterminism(self):
    # Stateless values should be equal iff the seeds are equal (roughly)
    with self.cached_session(), self.test_scope():
      seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
      seeds = [(x, y) for x in range(5) for y in range(5)] * 3
      for stateless_op in [
          stateless.stateless_random_uniform, stateless.stateless_random_normal
      ]:
        for shape in (), (3,), (2, 5):
          for dtype in self._random_types():
            pure = stateless_op(shape, seed=seed_t, dtype=dtype)
            values = [(seed, pure.eval(feed_dict={
                seed_t: seed
            })) for seed in seeds]
            for s0, v0 in values:
              for s1, v1 in values:
                self.assertEqual(s0 == s1, np.all(v0 == v1))

  def testRandomUniformIsInRange(self):
    with self.cached_session() as sess, self.test_scope():
      for dtype in self._random_types():
        seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
        x = stateless.stateless_random_uniform(
            shape=[1000], seed=seed_t, dtype=dtype)
        y = sess.run(x, {seed_t: [0x12345678, 0xabcdef12]})
        self.assertTrue(np.all(y >= 0))
        self.assertTrue(np.all(y < 1))

  def _chi_squared(self, x, bins):
    """Pearson's Chi-squared test."""
    x = np.ravel(x)
    n = len(x)
    histogram, _ = np.histogram(x, bins=bins, range=(0, 1))
    expected = n / float(bins)
    return np.sum(np.square(histogram - expected) / expected)

  def testDistributionOfStatelessRandomUniform(self):
    """Use Pearson's Chi-squared test to test for uniformity."""
    with self.cached_session() as sess, self.test_scope():
      for dtype in self._random_types():
        seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
        n = 1000
        x = stateless.stateless_random_uniform(
            shape=[n], seed=seed_t, dtype=dtype)
        y = sess.run(x, {seed_t: [565656, 121212]})
        # Tests that the values are distributed amongst 10 bins with equal
        # probability. 16.92 is the Chi^2 value for 9 degrees of freedom with
        # p=0.05. This test is probabilistic and would be flaky if the random
        # seed were not fixed.
        self.assertTrue(self._chi_squared(y, 10) < 16.92)

  def testRandomNormalIsFinite(self):
    with self.cached_session() as sess, self.test_scope():
      for dtype in self._random_types():
        seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
        x = stateless.stateless_random_normal(
            shape=[10000], seed=seed_t, dtype=dtype)
        y = sess.run(x, {seed_t: [0x12345678, 0xabcdef12]})
        self.assertTrue(np.all(np.isfinite(y)))

  def _normal_cdf(self, x):
    """Cumulative distribution function for a standard normal distribution."""
    return 0.5 + 0.5 * np.vectorize(math.erf)(x / math.sqrt(2))

  def _anderson_darling(self, x):
    """Anderson-Darling test for a standard normal distribution."""
    x = np.sort(np.ravel(x))
    n = len(x)
    i = np.linspace(1, n, n)
    z = np.sum((2 * i - 1) * np.log(self._normal_cdf(x)) +
               (2 * (n - i) + 1) * np.log(1 - self._normal_cdf(x)))
    return -n - z / n

  def testDistributionOfStatelessRandomNormal(self):
    """Use Anderson-Darling test to test distribution appears normal."""
    with self.cached_session() as sess, self.test_scope():
      for dtype in self._random_types():
        seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
        n = 1000
        x = stateless.stateless_random_normal(
            shape=[n], seed=seed_t, dtype=dtype)
        y = sess.run(x, {seed_t: [25252, 314159]})
        # The constant 2.492 is the 5% critical value for the Anderson-Darling
        # test where the mean and variance are known. This test is probabilistic
        # so to avoid flakiness the seed is fixed.
        self.assertTrue(self._anderson_darling(y) < 2.492)

  def testTruncatedNormalIsInRange(self):
    for dtype in self._random_types():
      with self.cached_session() as sess, self.test_scope():
        seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
        n = 10000000
        x = stateless.stateless_truncated_normal(
            shape=[n], seed=seed_t, dtype=dtype)
        y = sess.run(x, {seed_t: [0x12345678, 0xabcdef12]})

        def normal_cdf(x):
          return .5 * math.erfc(-x / math.sqrt(2))

        def normal_pdf(x):
          return math.exp(-(x**2) / 2.) / math.sqrt(2 * math.pi)

        def probit(x, sess=sess):
          return sess.run(special_math.ndtri(x))

        a = -2.
        b = 2.
        mu = 0.
        sigma = 1.

        alpha = (a - mu) / sigma
        beta = (b - mu) / sigma
        z = normal_cdf(beta) - normal_cdf(alpha)

        self.assertTrue((y >= a).sum() == n)
        self.assertTrue((y <= b).sum() == n)

        # For more information on these calculations, see:
        # Burkardt, John. "The Truncated Normal Distribution".
        # Department of Scientific Computing website. Florida State University.
        expected_mean = mu + (normal_pdf(alpha) - normal_pdf(beta)) / z * sigma
        actual_mean = np.mean(y)
        self.assertAllClose(actual_mean, expected_mean, atol=5e-4)

        expected_median = mu + probit(
            (normal_cdf(alpha) + normal_cdf(beta)) / 2.) * sigma
        actual_median = np.median(y)
        self.assertAllClose(actual_median, expected_median, atol=8e-4)

        expected_variance = sigma**2 * (1 + (
            (alpha * normal_pdf(alpha) - beta * normal_pdf(beta)) / z) - (
                (normal_pdf(alpha) - normal_pdf(beta)) / z)**2)
        actual_variance = np.var(y)
        self.assertAllClose(actual_variance, expected_variance, rtol=1e-3)



if __name__ == '__main__':
  test.main()