aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/compiler/plugin/executor/transfer_manager.cc
blob: 51c5deeea5d5fd03d0fb99d4f33413c7bf4abe0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/plugin/executor/transfer_manager.h"
#include "tensorflow/compiler/plugin/executor/platform_id.h"

#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/stream_executor_no_cuda.h"

#include <string>
#include <utility>
#include <vector>

namespace sep = ::perftools::gputools::executorplugin;

namespace xla {
namespace executorplugin {

ExecutorTransferManager::ExecutorTransferManager() {}

se::Platform::Id ExecutorTransferManager::PlatformId() const {
  return se::executorplugin::kExecutorPlatformId;
}

Status ExecutorTransferManager::TransferLiteralFromDevice(
    se::StreamExecutor* executor, const se::DeviceMemoryBase& source,
    const Shape& device_shape, const Shape& literal_shape, Literal* literal) {
  TF_RET_CHECK(ShapeUtil::Compatible(device_shape, literal_shape));

  // Tuples are a special case and contain one or more shapes inside of them to
  // an arbitrary nesting depth.
  if (device_shape.element_type() == TUPLE) {
    *literal->mutable_shape() = literal_shape;
    TF_ASSIGN_OR_RETURN(
        std::vector<se::DeviceMemoryBase> element_buffers,
        ShallowCopyTupleFromDevice(executor, source, device_shape));
    TF_RET_CHECK(element_buffers.size() ==
                 ShapeUtil::TupleElementCount(device_shape));
    for (int64 i = 0; i < element_buffers.size(); ++i) {
      const Shape& element_device_shape = device_shape.tuple_shapes(i);
      const Shape& element_literal_shape = literal_shape.tuple_shapes(i);
      Literal* element_literal = literal->add_tuple_literals();
      // Recursively call TransferFromDevice to copy over the data in the
      // element array.
      TF_RETURN_IF_ERROR(TransferLiteralFromDevice(
          executor, element_buffers[i], element_device_shape,
          element_literal_shape, element_literal));
    }
    return Status::OK();
  }

  *literal->mutable_shape() = device_shape;
  literal->Reserve(ShapeUtil::ElementsIn(device_shape));
  TF_RETURN_IF_ERROR(TransferBufferFromDevice(
      executor, source, ShapeUtil::ByteSizeOf(device_shape),
      literal->MutableInternalData()));
  if (!ShapeUtil::Equal(literal_shape, device_shape)) {
    literal->Swap(
        literal->Relayout(literal_shape.layout()).get());
  }
  TF_RET_CHECK(ShapeUtil::Equal(literal_shape, literal->shape()));
  return Status::OK();
}

StatusOr<std::vector<se::DeviceMemoryBase>>
ExecutorTransferManager::ShallowCopyTupleFromDevice(
    se::StreamExecutor* executor, const se::DeviceMemoryBase& source,
    const Shape& shape) {
  TF_RET_CHECK(ShapeUtil::IsTuple(shape));

  std::vector<void*> element_pointers(ShapeUtil::TupleElementCount(shape),
                                      nullptr);
  int64 tuple_size = ShapeUtil::ByteSizeOf(shape, sizeof(void*));
  auto copy_status = executor->SynchronousMemcpyD2H(source, tuple_size,
                                                    element_pointers.data());
  if (!copy_status.ok()) {
    return AddStatus(
        Status(static_cast<tensorflow::error::Code>(copy_status.code()),
               copy_status.error_message()),
        "failed transfer of tuple buffer " + ShapeUtil::HumanString(shape));
  }

  // Create a DeviceMemoryBase from each void* pointer.
  std::vector<se::DeviceMemoryBase> destination;
  for (int i = 0; i < element_pointers.size(); ++i) {
    if (element_pointers[i] == nullptr &&
        !ShapeUtil::HasZeroElements(shape.tuple_shapes(i))) {
      return FailedPrecondition("tuple contains nullptr at element %d", i);
    }
    int64 buffer_size =
        ShapeUtil::ByteSizeOf(shape.tuple_shapes(i), sizeof(void*));
    destination.emplace_back(element_pointers[i], buffer_size);
  }
  return std::move(destination);
}

Status ExecutorTransferManager::TransferLiteralToDevice(
    se::StreamExecutor* executor, const Literal& literal,
    se::DeviceMemoryBase* destination) {
  const Shape& shape = literal.shape();

  if (ShapeUtil::IsTuple(literal.shape())) {
    std::vector<void*> tuple_elements_on_device;
    for (const Literal& tuple_element : literal.tuple_literals()) {
      se::DeviceMemoryBase allocation = executor->AllocateArray<uint8>(
          GetByteSizeRequirement(tuple_element.shape()));
      TF_RETURN_IF_ERROR(
          TransferLiteralToDevice(executor, tuple_element, &allocation));
      tuple_elements_on_device.push_back(allocation.opaque());
    }
    return TransferBufferToDevice(
        executor, tuple_elements_on_device.size() * sizeof(void*),
        tuple_elements_on_device.data(), destination);
  }

  return TransferBufferToDevice(executor, GetByteSizeRequirement(shape),
                                literal.InternalData(),
                                destination);
}

Status ExecutorTransferManager::TransferLiteralToInfeed(
    se::StreamExecutor* executor, const Literal& literal) {
  const Shape& shape = literal.shape();
  VLOG(1) << "transferring literal shape to infeed: "
          << ShapeUtil::HumanString(shape);

  return Status::OK();
}

Status ExecutorTransferManager::TransferBufferToInfeed(
    se::StreamExecutor* executor, int64 size, const void* source) {
  return Unimplemented("Transfer to Infeed");
}

Status ExecutorTransferManager::TransferLiteralFromOutfeed(
    perftools::gputools::StreamExecutor* executor, const Shape& literal_shape,
    Literal* literal) {
  const Shape& shape = literal->shape();
  VLOG(1) << "transferring literal shape from outfeed: "
          << ShapeUtil::HumanString(shape);

  return Status::OK();
}

Status ExecutorTransferManager::ResetDevices(
    tensorflow::gtl::ArraySlice<perftools::gputools::StreamExecutor*>
        executors) {
  return Unimplemented("Device reset not supported");
}

int64 ExecutorTransferManager::GetByteSizeRequirement(const Shape& shape) {
  return ShapeUtil::ByteSizeOf(shape, sizeof(void*));
}

}  // namespace executorplugin
}  // namespace xla

static std::unique_ptr<xla::TransferManager> CreateExecutorTransferManager() {
  return xla::MakeUnique<xla::executorplugin::ExecutorTransferManager>();
}

static bool InitModule() {
  xla::TransferManager::RegisterTransferManager(sep::kExecutorPlatformId,
                                                &CreateExecutorTransferManager);
  return true;
}
static bool module_initialized = InitModule();