aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/cc/framework/gradients.cc
blob: affd90b1bcc7cb4a8b3ffed6aeeb4bd480f5e314 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <deque>
#include <vector>

#include "tensorflow/cc/framework/grad_op_registry.h"
#include "tensorflow/cc/framework/gradients.h"
#include "tensorflow/cc/framework/while_gradients.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/framework/function.h"
#include "tensorflow/core/framework/node_def_util.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/graph/while_context.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/platform/macros.h"

namespace tensorflow {
namespace {

struct OutputHash {
  uint64 operator()(const Output& x) const {
    return x.hash();
  }
};

struct OutputEq {
  bool operator()(const Output& x, const Output& y) const {
    return (x.node() == y.node()) && (x.index() == y.index());
  }
};

class SymbolicGradientBuilder {
 public:
  SymbolicGradientBuilder(const Scope& scope,
                          const ops::GradOpRegistry* registry,
                          const std::vector<Output>& outputs,
                          const std::vector<Output>& inputs,
                          const std::vector<Output>& grad_inputs,
                          std::vector<Output>* grad_outputs);

  Status AddGradients();

  static Output NoGradient() { return Output(nullptr, -1); }

 private:
  Status Initialize();

  // For each forward edge from `src` to `dst` in the initial/forward graph:
  // propagates gradients `dst_grad` backwards along the edge from `src`
  // to `dst` in the graph. This will add `dst_grad` to the list of pending
  // gradients for the node associated with `src`.
  Status BackpropAlongEdge(const Output& dst_grad, const Output& src);

  // Adds a node to the graph (returned in `grad`) that sums the in-bound
  // gradients to `src` (if there are more than one).
  Status SumGradients(const Output& src, Output* grad);

  // Returns true if `opname` is registered in `registry_` with no gradient
  // function, false otherwise.
  bool IsPrimitiveOpWithNoGrad(const string& opname);

  // Call the gradient function for `op`, storing the result in `grad_outputs`.
  Status CallGradFunction(const Operation& op,
                          const std::vector<Output>& grad_inputs,
                          std::vector<Output>* grad_outputs);

  // Returns a list mapping whether each node in the graph is reachable
  // from outputs_. Keyed by node id.
  std::vector<bool> GetReachableNodes();

  // Creates the gradient subgraph for a while loop (or just stores
  // `summed_grads` if not all incoming gradients are available yet). All exit
  // nodes (which are the first nodes of a loop encountered in the backwards
  // pass) are passed to this function rather than processed normally.
  // `summed_grads` is the sum of `exit_node`s gradients.
  Status ProcessWhileLoop(Node* exit_node, const Output& summed_grads);

  // Gets the set of node ids at which to stop backprop. These are all elements
  // of `outputs_` that do not get transitively consumed by other `outputs_`.
  // Used to identify nodes at which to stop backprop.
  std::unordered_set<int> GetStopBackpropNodes(
      const std::vector<bool>& reachable_nodes,
      std::unordered_set<int> output_nodes);

  const Scope& scope_;
  const ops::GradOpRegistry* registry_;
  const std::vector<Output>& outputs_;
  const std::vector<Output>& inputs_;
  const std::vector<Output>& grad_inputs_;
  std::vector<Output>* grad_outputs_;

  // A vector of output endpoints which represents backpropagated gradients.
  typedef std::vector<Output> BackproppedGradients;

  // backprops_ is a map from a node output to its accumulated
  // gradients.  When a node output has accumulated all its
  // gradients, we add a node which sums them up.
  std::unordered_map<Output, BackproppedGradients, OutputHash, OutputEq>
      backprops_;

  // pending[i] is count-down counter for i-th node's expected
  // backprops.  When pending[i] becomes zero, we collected all
  // backprop gradients for all outputs of the ith-node.
  std::vector<int> pending_;

  // `ready` keeps track of nodes that have been completely
  // backpropped. Initially, for every output in `outputs_`, we add initial
  // gradients from `grad_inputs_`.
  std::deque<Node*> ready_;

  // The set of node ids in `inputs_`. Used to identify nodes at backprop
  // frontier. Maps from Output -> index into `grad_outputs_`.
  std::unordered_map<Output, int, OutputHash, OutputEq> input_nodes_;

  // For each while loop in the graph, collects the summed gradients for each of
  // the loop's exit nodes. Note that unlike backprops_, this map contains the
  // output of SumGradients(), not the input (i.e. each exit node may have
  // multiple incoming gradients, but we only store the combined Output here).
  std::map<WhileContext*, std::map<Node*, Output>> while_backprops_;

  TF_DISALLOW_COPY_AND_ASSIGN(SymbolicGradientBuilder);
};

SymbolicGradientBuilder::SymbolicGradientBuilder(
    const Scope& scope, const ops::GradOpRegistry* registry,
    const std::vector<Output>& outputs, const std::vector<Output>& inputs,
    const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs)
    : scope_(scope),
      registry_(registry),
      outputs_(outputs),
      inputs_(inputs),
      grad_inputs_(grad_inputs),
      grad_outputs_(grad_outputs) {}

Status SymbolicGradientBuilder::BackpropAlongEdge(const Output& dst_grad,
                                                  const Output& src) {
  if (src.node() == nullptr) {
    return errors::Internal("Attempted to backprop along an invalid edge.");
  }
  auto iter = backprops_.find(src);
  if (iter != backprops_.end()) {
    auto* grads = &iter->second;
    grads->push_back(dst_grad);
    if (--pending_[src.node()->id()] == 0) {
      ready_.push_back(src.node());
    }
  }
  return Status::OK();
}

std::vector<bool> SymbolicGradientBuilder::GetReachableNodes() {
  std::vector<bool> reachable_nodes(scope_.graph()->num_node_ids(), false);
  std::deque<Node*> queue;
  std::vector<bool> visited(scope_.graph()->num_node_ids(), false);
  for (const Output& out : outputs_) {
    if (!reachable_nodes[out.node()->id()]) {
      queue.push_back(out.node());
      reachable_nodes[out.node()->id()] = true;
    }
  }

  while (!queue.empty()) {
    Node* n = queue.front();
    queue.pop_front();
    for (const Edge* e : n->in_edges()) {
      if (e->IsControlEdge()) continue;
      if (visited[e->src()->id()]) continue;
      queue.push_back(e->src());
      reachable_nodes[e->src()->id()] = true;
      visited[e->src()->id()] = true;
    }
  }
  return reachable_nodes;
}

std::unordered_set<int> SymbolicGradientBuilder::GetStopBackpropNodes(
    const std::vector<bool>& reachable_nodes,
    std::unordered_set<int> output_nodes) {
  // Output nodes that get transitively consumed by other `outputs_` are stored
  // in `internal_outputs`.
  std::unordered_set<int> internal_outputs;
  std::unordered_set<Node*> visited;
  // Initialize `queue` for BFS traversal. Nodes in `queue` hold upcoming nodes
  // along with the last Node in `output_` encountered along that path. If no
  // `output_` node was encountered, pair.second will be nullptr.
  std::deque<std::pair<Node*, Node*>> queue;
  for (const Output& nout : inputs_) {
    if (visited.find(nout.node()) == visited.end()) {
      queue.push_back(std::make_pair(nout.node(), static_cast<Node*>(nullptr)));
      visited.insert(nout.node());
    }
  }
  // BFS from nodes in 'inputs_' along out edges for the entire graph. Internal
  // output nodes are recorded during the traversal. All nodes that are output
  // nodes but not internal output nodes are considered the frontier of the
  // output nodes, and thus our stop backprop nodes.
  while (!queue.empty()) {
    std::pair<Node*, Node*> p = queue.front();
    Node* n = p.first;
    queue.pop_front();
    for (const Edge* e : n->out_edges()) {
      // If a node is not reachable from outputs_, we can stop.
      if (e->IsControlEdge() || !reachable_nodes[e->dst()->id()]) continue;
      if (visited.find(e->dst()) != visited.end()) continue;

      int node_id = e->dst()->id();
      Node* last_output_node = p.second;
      if (output_nodes.find(node_id) != output_nodes.end()) {
        // We reached an output node.
        if (last_output_node != nullptr) {
          // If we had already found an output node on this path so we mark
          // it as an internal output.
          internal_outputs.insert(last_output_node->id());
        }
        // Mark this newly found output node to insert in the queue.
        last_output_node = e->dst();
      }
      queue.push_back(std::make_pair(e->dst(), last_output_node));
      visited.insert(e->dst());
    }
  }
  // Finally, we set stop_backprop_nodes to all output_nodes that aren't also
  // internal_outputs.
  std::unordered_set<int> stop_backprop_nodes;
  for (int output_node : output_nodes) {
    if (internal_outputs.find(output_node) == internal_outputs.end()) {
      stop_backprop_nodes.insert(output_node);
    }
  }
  return stop_backprop_nodes;
}

Status SymbolicGradientBuilder::Initialize() {
  if (outputs_.size() != grad_inputs_.size()) {
    return errors::InvalidArgument(
        "Must specify a gradient input for each output.");
  }
  std::vector<bool> reachable_nodes = GetReachableNodes();
  for (const Output& input : inputs_) {
    if (!reachable_nodes[input.node()->id()]) {
      return errors::InvalidArgument(
          "Cannot compute the partial derivative for node '",
          input.node()->name(),
          "' as it's unreachable from the output node(s).");
    }
  }
  grad_outputs_->clear();
  grad_outputs_->resize(inputs_.size());

  std::unordered_set<int> output_nodes;
  output_nodes.reserve(outputs_.size());
  for (size_t i = 0; i < outputs_.size(); ++i) {
    output_nodes.insert(outputs_[i].node()->id());
  }

  std::unordered_set<int> stop_backprop_nodes =
      GetStopBackpropNodes(reachable_nodes, output_nodes);

  // Populate `input_nodes_` from Outputs in `inputs_`.
  input_nodes_.reserve(inputs_.size());
  for (size_t i = 0; i < inputs_.size(); ++i) {
    input_nodes_.insert({inputs_[i], i});
  }

  // TODO(andydavis) Consider a more efficient data structure for `pending_` to
  // handle computing gradients over small subgraphs from a very large graph.
  pending_.resize(scope_.graph()->num_node_ids(), 0);
  {
    backprops_.clear();
    std::unordered_set<Node*> visited;
    std::deque<Node*> queue;
    for (const Output& nout : inputs_) {
      if (visited.find(nout.node()) == visited.end()) {
        queue.push_back(nout.node());
        visited.insert(nout.node());
      }
    }

    // Going forward to figure out which endpoints need backprop-ed.
    // A node's endpoints need to be backprop-ed only if one of the
    // arg node can reach the node via data edges.
    while (!queue.empty()) {
      Node* n = queue.front();
      queue.pop_front();
      for (int i = 0; i < n->num_outputs(); ++i) {
        backprops_[{n, i}].clear();
      }
      int num_expected_backprops = 0;
      if (stop_backprop_nodes.find(n->id()) == stop_backprop_nodes.end()) {
        // Internal node: continue BFS along connected outputs.
        for (const Edge* e : n->out_edges()) {
          // If a node is not reachable from outputs_,
          // we don't expect it to receive a backpropagated gradient.
          // It will not be counted in num_expected_backprops.
          if (e->IsControlEdge() || !reachable_nodes[e->dst()->id()]) continue;
          if (visited.find(e->dst()) == visited.end()) {
            queue.push_back(e->dst());
            visited.insert(e->dst());
          }
          ++num_expected_backprops;
        }
      }
      if (output_nodes.find(n->id()) != output_nodes.end()) {
        // Output node: update `num_expected_backprops` for each Output in
        // `outputs_` that references `n`.
        for (const Output& output : outputs_) {
          if (output.node() == n) {
            ++num_expected_backprops;
          }
        }
      }
      pending_[n->id()] = num_expected_backprops;
    }
  }

  {
    // Initialize backprop with `grad_inputs_`.
    const size_t num_dy = grad_inputs_.size();
    for (size_t i = 0; i < num_dy; ++i) {
      TF_RETURN_IF_ERROR(BackpropAlongEdge(grad_inputs_[i], outputs_[i]));
    }
  }
  return Status::OK();
}

Status SymbolicGradientBuilder::SumGradients(const Output& src, Output* grad) {
  auto iter = backprops_.find(src);
  if (iter == backprops_.end()) {
    return errors::Internal(
        "Unable to find backprop list for node.id ", src.node()->name());
  }
  const auto& grads = iter->second;
  // Filter any backproped 'NoGradient' Outputs from 'grads' (if needed).
  // Return any valid backproped gradients that remain after filtering,
  // or 'NoGradient' otherwise.
  std::vector<Output> grads_to_keep;
  for (const Output& o : grads) {
    if (o == NoGradient()) continue;
    grads_to_keep.push_back(o);
  }

  if (grads_to_keep.empty()) {
    // Nothing propagated back. Return 'NoGradient'.
    *grad = NoGradient();
  } else if (grads_to_keep.size() == 1) {
    // Just one backprop edge.
    *grad = grads_to_keep[0];
  } else {
    // Otherwise, adds backprop-ed gradients.
    // TODO(andydavis) Use a better accumulator here.
    *grad = ops::AddN(scope_, grads_to_keep);
  }

  return Status::OK();
}

bool SymbolicGradientBuilder::IsPrimitiveOpWithNoGrad(const string& opname) {
  ops::GradFunc grad_fn;
  Status s = registry_->Lookup(opname, &grad_fn);
  return s.ok() && (grad_fn == nullptr);
}

Status SymbolicGradientBuilder::CallGradFunction(
    const Operation& op,
    const std::vector<Output>& grad_inputs,
    std::vector<Output>* grad_outputs) {
  ops::GradFunc grad_fn;
  TF_RETURN_IF_ERROR(registry_->Lookup(op.node()->type_string(), &grad_fn));
  TF_RETURN_IF_ERROR(grad_fn(scope_, op, grad_inputs, grad_outputs));
  TF_RETURN_IF_ERROR(scope_.status());
  return Status::OK();
}

Status SymbolicGradientBuilder::ProcessWhileLoop(Node* exit_node,
                                                 const Output& summed_grads) {
  // TODO(skyewm): detect second-order gradient and return bad status
  // TODO(skyewm): handle (or at least detect) nested while loops

  // TODO(skyewm): handle NoGradient in while loop
  if (summed_grads == NoGradient()) {
    return errors::Unimplemented(
        "Missing gradient into while loop not yet implemented");
  }

  DCHECK(exit_node->IsExit());
  WhileContext* while_ctx = exit_node->while_ctx();
  DCHECK(while_ctx != nullptr);

  // Record 'summed_grads' as the backprop input associated with 'exit_node'
  std::map<Node*, Output>& backprops = while_backprops_[while_ctx];
  DCHECK(backprops.find(exit_node) == backprops.end());
  backprops[exit_node] = summed_grads;

  // Wait until we have all exit nodes' backprops collected before processing
  // the while loop.
  // TODO(skyewm): what if not all the exit nodes are reachable?
  if (backprops.size() < while_ctx->exit_nodes().size()) return Status::OK();

  // We've seen all the exit nodes for this loop and have collected all the
  // backprops. Create the gradient graph for the while loop.
  Scope while_scope =
      scope_.NewSubScope(strings::StrCat(while_ctx->frame_name(), "_grad"));
  std::vector<Output> dy;
  for (Node* n : while_ctx->exit_nodes()) dy.push_back(backprops[n]);
  std::vector<Output> dx;
  TF_RETURN_IF_ERROR(AddWhileLoopGradient(while_ctx, while_scope, dy, &dx));

  // Backprop along the in edges to the while loop (i.e. the inputs to the enter
  // nodes)
  DCHECK_EQ(dx.size(), while_ctx->enter_nodes().size());
  for (int i = 0; i < dx.size(); ++i) {
    Node* enter_node = while_ctx->enter_nodes()[i];
    for (const Edge* e : enter_node->in_edges()) {
      if (e->IsControlEdge()) continue;
      TF_RETURN_IF_ERROR(BackpropAlongEdge(dx[i], {e->src(), e->src_output()}));
    }
  }
  return Status::OK();
}

Status SymbolicGradientBuilder::AddGradients() {
  // Initialize backprops.
  TF_RETURN_IF_ERROR(Initialize());

  // Backward propagation.
  std::vector<Output> dy;
  while (!ready_.empty()) {
    // n has collected all gradients.
    Node* n = ready_.front();
    ready_.pop_front();

    // dy[i] is the sum of i-th output's backpropped gradients.
    const int num_y = n->num_outputs();
    dy.clear();
    dy.resize(num_y, {nullptr, 0});
    std::vector<int> no_grad_dy_indices;
    for (int i = 0; i < num_y; ++i) {
      TF_RETURN_IF_ERROR(SumGradients({n, i}, &dy[i]));
      if (dy[i] == NoGradient()) {
        no_grad_dy_indices.push_back(i);
      }
      auto iter = input_nodes_.find({n, i});
      if (iter != input_nodes_.end()) {
        // Return gradients for Output in 'grad_outputs_'.
        (*grad_outputs_)[iter->second] = dy[i];
      }
    }

    // Stop backprop if none of the inputs to `n` are in `backprops_'.
    bool stop_node = true;
    for (const Edge* e : n->in_edges()) {
      if (e->IsControlEdge()) continue;
      if (backprops_.find({e->src(), e->src_output()}) != backprops_.end()) {
        stop_node = false;
        break;
      }
    }

    if (stop_node) {
      continue;
    }

    // Special case: if we find an exit node, process the associated while loop.
    // Note that ProcessWhileLoop() calls BackpropAlongEdge() if necessary
    // (which updates ready_), and we skip all the regular processing below
    // after calling it.
    if (n->IsExit()) {
      DCHECK_EQ(dy.size(), 1);
      TF_RETURN_IF_ERROR(ProcessWhileLoop(n, dy[0]));
      continue;
    }
    // All loop-specific control flow ops should have been handled above
    DCHECK(!n->IsEnter() && !n->IsNextIteration()) << n->DebugString();

    const size_t num_no_grad = no_grad_dy_indices.size();
    if (IsPrimitiveOpWithNoGrad(n->type_string()) || num_no_grad == num_y) {
      // No grad defined for this op, or all outputs returned 'NoGradient':
      // Backprop 'NoGradient' along the in edges.
      for (const Edge* e : n->in_edges()) {
        if (e->IsControlEdge()) continue;
        TF_RETURN_IF_ERROR(
            BackpropAlongEdge(NoGradient(), {e->src(), e->src_output()}));
      }
      continue;
    }

    if (num_no_grad > 0 && num_no_grad < num_y) {
      // The outputs of 'n' returned a mixture of valid gradients and
      // 'NoGradient'. Therefore, we need to add 'ZerosLike' nodes for each
      // 'NoGradient' output before we call the gradient function for 'n'.
      // TODO(andydavis) If static shapes are known, replace 'ZerosLike' with
      // zero-filled Constant node of appropriate shape.
      for (const int dy_index : no_grad_dy_indices) {
        dy[dy_index] = ops::ZerosLike(scope_, Output(n, dy_index));
      }
    }

    // TODO(andydavis) Add option to encapsulate grad function in
    // SymbolicGradientOp (as opposed to inlining into the graph).
    std::vector<Output> dx;
    TF_RETURN_IF_ERROR(CallGradFunction(Operation(n), dy, &dx));

    // Backprop along the in edges.
    // TODO(andydavis) Find cleaner way to map each grad output returned by
    // gradient function to the src node/output to which it should be
    // backproped. Maybe grad functions can return a vector of Output pairs to
    // make this association explicit.
    size_t dx_index = 0;
    for (const Edge* e : n->in_edges()) {
      if (e->IsControlEdge()) continue;
      if (dx_index == dx.size()) {
        return errors::Internal(
            "Invalid gradient output index: ", dx_index, " size: ", dx.size());
      }
      TF_RETURN_IF_ERROR(
          BackpropAlongEdge(dx[dx_index++], {e->src(), e->src_output()}));
    }
  }

  // Check if any input nodes still have pending gradients and have not been
  // processed yet. This happens if not all outputs of a node are in 'inputs_'.
  std::unordered_map<Node*, int> requested_grads;
  for (const Output& nout : inputs_) {
    if (pending_[nout.node()->id()] > 0) {
      DCHECK_GT(nout.node()->num_outputs(), 1);
      int idx = input_nodes_[nout];
      DCHECK(((*grad_outputs_)[idx].node() == nullptr));
      TF_RETURN_IF_ERROR(SumGradients(nout, &(*grad_outputs_)[idx]));
      ++requested_grads[nout.node()];
    }
  }
  for (const auto& p : requested_grads) {
    int num_requested_inputs = p.first->num_outputs() - pending_[p.first->id()];
    CHECK_EQ(num_requested_inputs, p.second);
  }
  return Status::OK();
}

}  // namespace

Status AddSymbolicGradients(const Scope& scope,
                            const std::vector<Output>& outputs,
                            const std::vector<Output>& inputs,
                            const std::vector<Output>& grad_inputs,
                            std::vector<Output>* grad_outputs) {
  SymbolicGradientBuilder builder(scope, ops::GradOpRegistry::Global(), outputs,
                                  inputs, grad_inputs, grad_outputs);
  return builder.AddGradients();
}

Status AddSymbolicGradients(const Scope& scope,
                            const std::vector<Output>& outputs,
                            const std::vector<Output>& inputs,
                            std::vector<Output>* grad_outputs) {
  std::vector<Output> grad_inputs;
  grad_inputs.reserve(outputs.size());
  for (const Output& output : outputs) {
    grad_inputs.emplace_back(ops::OnesLike(scope, output));
  }
  return AddSymbolicGradients(scope, outputs, inputs, grad_inputs,
                              grad_outputs);
}

Output NoGradient() { return SymbolicGradientBuilder::NoGradient(); }

}  // end namespace tensorflow