aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/unsupported/Eigen/src/FFT/ei_fftw_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/unsupported/Eigen/src/FFT/ei_fftw_impl.h')
-rw-r--r--third_party/eigen3/unsupported/Eigen/src/FFT/ei_fftw_impl.h261
1 files changed, 261 insertions, 0 deletions
diff --git a/third_party/eigen3/unsupported/Eigen/src/FFT/ei_fftw_impl.h b/third_party/eigen3/unsupported/Eigen/src/FFT/ei_fftw_impl.h
new file mode 100644
index 0000000000..d49aa17f51
--- /dev/null
+++ b/third_party/eigen3/unsupported/Eigen/src/FFT/ei_fftw_impl.h
@@ -0,0 +1,261 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+namespace Eigen {
+
+namespace internal {
+
+ // FFTW uses non-const arguments
+ // so we must use ugly const_cast calls for all the args it uses
+ //
+ // This should be safe as long as
+ // 1. we use FFTW_ESTIMATE for all our planning
+ // see the FFTW docs section 4.3.2 "Planner Flags"
+ // 2. fftw_complex is compatible with std::complex
+ // This assumes std::complex<T> layout is array of size 2 with real,imag
+ template <typename T>
+ inline
+ T * fftw_cast(const T* p)
+ {
+ return const_cast<T*>( p);
+ }
+
+ inline
+ fftw_complex * fftw_cast( const std::complex<double> * p)
+ {
+ return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
+ }
+
+ inline
+ fftwf_complex * fftw_cast( const std::complex<float> * p)
+ {
+ return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
+ }
+
+ inline
+ fftwl_complex * fftw_cast( const std::complex<long double> * p)
+ {
+ return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
+ }
+
+ template <typename T>
+ struct fftw_plan {};
+
+ template <>
+ struct fftw_plan<float>
+ {
+ typedef float scalar_type;
+ typedef fftwf_complex complex_type;
+ fftwf_plan m_plan;
+ fftw_plan() :m_plan(NULL) {}
+ ~fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft_c2r( m_plan, src,dst);
+ }
+
+ inline
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+
+ };
+ template <>
+ struct fftw_plan<double>
+ {
+ typedef double scalar_type;
+ typedef fftw_complex complex_type;
+ ::fftw_plan m_plan;
+ fftw_plan() :m_plan(NULL) {}
+ ~fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft_c2r( m_plan, src,dst);
+ }
+ inline
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ };
+ template <>
+ struct fftw_plan<long double>
+ {
+ typedef long double scalar_type;
+ typedef fftwl_complex complex_type;
+ fftwl_plan m_plan;
+ fftw_plan() :m_plan(NULL) {}
+ ~fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft_c2r( m_plan, src,dst);
+ }
+ inline
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ };
+
+ template <typename _Scalar>
+ struct fftw_impl
+ {
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+
+ inline
+ void clear()
+ {
+ m_plans.clear();
+ }
+
+ // complex-to-complex forward FFT
+ inline
+ void fwd( Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src),nfft );
+ }
+
+ // real-to-complex forward FFT
+ inline
+ void fwd( Complex * dst,const Scalar * src,int nfft)
+ {
+ get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src) ,nfft);
+ }
+
+ // 2-d complex-to-complex
+ inline
+ void fwd2(Complex * dst, const Complex * src, int n0,int n1)
+ {
+ get_plan(n0,n1,false,dst,src).fwd2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
+ }
+
+ // inverse complex-to-complex
+ inline
+ void inv(Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
+ }
+
+ // half-complex to scalar
+ inline
+ void inv( Scalar * dst,const Complex * src,int nfft)
+ {
+ get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
+ }
+
+ // 2-d complex-to-complex
+ inline
+ void inv2(Complex * dst, const Complex * src, int n0,int n1)
+ {
+ get_plan(n0,n1,true,dst,src).inv2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
+ }
+
+
+ protected:
+ typedef fftw_plan<Scalar> PlanData;
+
+ typedef std::map<int64_t,PlanData> PlanMap;
+
+ PlanMap m_plans;
+
+ inline
+ PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
+ {
+ bool inplace = (dst==src);
+ bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
+ int64_t key = ( (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1;
+ return m_plans[key];
+ }
+
+ inline
+ PlanData & get_plan(int n0,int n1,bool inverse,void * dst,const void * src)
+ {
+ bool inplace = (dst==src);
+ bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
+ int64_t key = ( ( (((int64_t)n0) << 30)|(n1<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
+ return m_plans[key];
+ }
+ };
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */