aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h')
-rw-r--r--third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h510
1 files changed, 510 insertions, 0 deletions
diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
new file mode 100644
index 0000000000..36c436a613
--- /dev/null
+++ b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
@@ -0,0 +1,510 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
+#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
+
+namespace Eigen {
+
+/** \class TensorKChippingReshaping
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor.
+ *
+ *
+ */
+
+namespace internal {
+template<DenseIndex DimId, typename XprType>
+struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType>
+{
+ typedef typename XprType::Scalar Scalar;
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions - 1;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<DenseIndex DimId, typename XprType>
+struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense>
+{
+ typedef const TensorChippingOp<DimId, XprType>& type;
+};
+
+template<DenseIndex DimId, typename XprType>
+struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type>
+{
+ typedef TensorChippingOp<DimId, XprType> type;
+};
+
+template <DenseIndex DimId>
+struct DimensionId
+{
+ DimensionId(DenseIndex dim) {
+ eigen_assert(dim == DimId);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
+ return DimId;
+ }
+};
+template <>
+struct DimensionId<Dynamic>
+{
+ DimensionId(DenseIndex dim) : actual_dim(dim) {
+ eigen_assert(dim >= 0);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
+ return actual_dim;
+ }
+ private:
+ const DenseIndex actual_dim;
+};
+
+
+} // end namespace internal
+
+
+
+template<DenseIndex DimId, typename XprType>
+class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> >
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim)
+ : m_xpr(expr), m_offset(offset), m_dim(dim) {
+ }
+
+ EIGEN_DEVICE_FUNC
+ const Index offset() const { return m_offset; }
+ EIGEN_DEVICE_FUNC
+ const Index dim() const { return m_dim.actualDim(); }
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorChippingOp& operator = (const TensorChippingOp& other)
+ {
+ typedef TensorAssignOp<TensorChippingOp, const TensorChippingOp> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other)
+ {
+ typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign;
+ Assign assign(*this, other);
+ internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
+ return *this;
+ }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const Index m_offset;
+ const internal::DimensionId<DimId> m_dim;
+};
+
+
+// Eval as rvalue
+template<DenseIndex DimId, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
+{
+ typedef TensorChippingOp<DimId, ArgType> XprType;
+ static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ static const int NumDims = NumInputDims-1;
+ typedef typename XprType::Index Index;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
+
+ enum {
+ // Alignment can't be guaranteed at compile time since it depends on the
+ // slice offsets.
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ };
+
+ typedef internal::TensorBlock<Index, ScalarNonConst, NumInputDims, Layout>
+ InputTensorBlock;
+ typedef internal::TensorBlock<Index, ScalarNonConst, NumDims, Layout>
+ OutputTensorBlock;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device)
+ {
+ EIGEN_STATIC_ASSERT(NumInputDims >= 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
+ eigen_assert(NumInputDims > m_dim.actualDim());
+ const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
+ eigen_assert(op.offset() < input_dims[m_dim.actualDim()]);
+
+ int j = 0;
+ for (int i = 0; i < NumInputDims; ++i) {
+ if (i != m_dim.actualDim()) {
+ m_dimensions[j] = input_dims[i];
+ ++j;
+ }
+ }
+
+ m_stride = 1;
+ m_inputStride = 1;
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = 0; i < m_dim.actualDim(); ++i) {
+ m_stride *= input_dims[i];
+ m_inputStride *= input_dims[i];
+ }
+ } else {
+ for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) {
+ m_stride *= input_dims[i];
+ m_inputStride *= input_dims[i];
+ }
+ }
+ m_inputStride *= input_dims[m_dim.actualDim()];
+ m_inputOffset = m_stride * op.offset();
+
+ if (BlockAccess) {
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ m_inputStrides[0] = 1;
+ for (int i = 1; i < NumInputDims; ++i) {
+ m_inputStrides[i] = m_inputStrides[i - 1] * input_dims[i - 1];
+ }
+ } else {
+ m_inputStrides[NumInputDims - 1] = 1;
+ for (int i = NumInputDims - 2; i >= 0; --i) {
+ m_inputStrides[i] = m_inputStrides[i + 1] * input_dims[i + 1];
+ }
+ }
+
+ m_block_total_size_max = numext::maxi(static_cast<std::size_t>(1),
+ device.lastLevelCacheSize() /
+ sizeof(Scalar));
+ }
+ }
+
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return m_impl.coeff(srcCoeff(index));
+ }
+
+ template<int LoadMode>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
+ {
+ const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ eigen_assert(index+packetSize-1 < dimensions().TotalSize());
+
+ if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
+ m_dim.actualDim() == 0) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
+ m_dim.actualDim() == NumInputDims - 1)) {
+ // m_stride is equal to 1, so let's avoid the integer division.
+ eigen_assert(m_stride == 1);
+ Index inputIndex = index * m_inputStride + m_inputOffset;
+ EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
+ for (int i = 0; i < packetSize; ++i) {
+ values[i] = m_impl.coeff(inputIndex);
+ inputIndex += m_inputStride;
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
+ m_dim.actualDim() == NumInputDims - 1) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
+ m_dim.actualDim() == 0)) {
+ // m_stride is aways greater than index, so let's avoid the integer division.
+ eigen_assert(m_stride > index);
+ return m_impl.template packet<LoadMode>(index + m_inputOffset);
+ } else {
+ const Index idx = index / m_stride;
+ const Index rem = index - idx * m_stride;
+ if (rem + packetSize <= m_stride) {
+ Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
+ return m_impl.template packet<LoadMode>(inputIndex);
+ } else {
+ // Cross the stride boundary. Fallback to slow path.
+ EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
+ for (int i = 0; i < packetSize; ++i) {
+ values[i] = coeff(index);
+ ++index;
+ }
+ PacketReturnType rslt = internal::pload<PacketReturnType>(values);
+ return rslt;
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements(
+ std::vector<internal::TensorOpResourceRequirements>* resources) const {
+ resources->push_back(internal::TensorOpResourceRequirements(
+ internal::kSkewedInnerDims, m_block_total_size_max));
+ m_impl.getResourceRequirements(resources);
+ }
+
+ // TODO(andydavis) Reduce the overhead of this function (experiment with
+ // using a fixed block size).
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void block(
+ OutputTensorBlock* output_block) const {
+ // Calculate input block sizes.
+ const DSizes<Index, NumDims>& output_block_sizes =
+ output_block->block_sizes();
+ const DSizes<Index, NumDims>& output_block_strides =
+ output_block->block_strides();
+ const Index chip_dim = m_dim.actualDim();
+ DSizes<Index, NumInputDims> input_block_sizes;
+ DSizes<Index, NumInputDims> input_block_strides;
+ for (Index i = 0; i < NumInputDims; ++i) {
+ if (i < chip_dim) {
+ input_block_sizes[i] = output_block_sizes[i];
+ input_block_strides[i] = output_block_strides[i];
+ } else if (i > chip_dim) {
+ input_block_sizes[i] = output_block_sizes[i - 1];
+ input_block_strides[i] = output_block_strides[i - 1];
+ } else {
+ input_block_sizes[i] = 1;
+ }
+ }
+ // Fix up input_block_stride for chip dimension.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ if (chip_dim == 0) {
+ input_block_strides[chip_dim] = 1;
+ } else {
+ input_block_strides[chip_dim] = input_block_strides[chip_dim - 1] *
+ input_block_sizes[chip_dim - 1];
+ }
+ } else {
+ if (chip_dim == NumInputDims - 1) {
+ input_block_strides[chip_dim] = 1;
+ } else {
+ input_block_strides[chip_dim] = input_block_strides[chip_dim + 1] *
+ input_block_sizes[chip_dim + 1];
+ }
+ }
+ // Instantiate and read input block from input tensor.
+ InputTensorBlock input_block(srcCoeff(output_block->first_coeff_index()),
+ input_block_sizes,
+ input_block_strides,
+ m_inputStrides,
+ output_block->data());
+ m_impl.block(&input_block);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const {
+ CoeffReturnType* result = const_cast<CoeffReturnType*>(m_impl.data());
+ if (((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
+ m_dim.actualDim() == NumDims) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
+ m_dim.actualDim() == 0)) &&
+ result) {
+ return result + m_inputOffset;
+ } else {
+ return NULL;
+ }
+ }
+
+ protected:
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
+ {
+ Index inputIndex;
+ if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
+ m_dim.actualDim() == 0) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
+ m_dim.actualDim() == NumInputDims - 1)) {
+ // m_stride is equal to 1, so let's avoid the integer division.
+ eigen_assert(m_stride == 1);
+ inputIndex = index * m_inputStride + m_inputOffset;
+ } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
+ m_dim.actualDim() == NumInputDims - 1) ||
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
+ m_dim.actualDim() == 0)) {
+ // m_stride is aways greater than index, so let's avoid the integer division.
+ eigen_assert(m_stride > index);
+ inputIndex = index + m_inputOffset;
+ } else {
+ const Index idx = index / m_stride;
+ inputIndex = idx * m_inputStride + m_inputOffset;
+ index -= idx * m_stride;
+ inputIndex += index;
+ }
+ return inputIndex;
+ }
+
+ Dimensions m_dimensions;
+ Index m_stride;
+ Index m_inputOffset;
+ Index m_inputStride;
+ DSizes<Index, NumInputDims> m_inputStrides;
+ TensorEvaluator<ArgType, Device> m_impl;
+ const internal::DimensionId<DimId> m_dim;
+ const Device& m_device;
+ std::size_t m_block_total_size_max;
+};
+
+
+// Eval as lvalue
+template<DenseIndex DimId, typename ArgType, typename Device>
+struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
+ : public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
+{
+ typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
+ typedef TensorChippingOp<DimId, ArgType> XprType;
+ static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
+ static const int NumDims = NumInputDims-1;
+ typedef typename XprType::Index Index;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename XprType::Scalar Scalar;
+
+ enum {
+ IsAligned = false,
+ PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
+ BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : Base(op, device)
+ { }
+
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
+ typedef internal::TensorBlock<Index, ScalarNonConst, NumInputDims, Layout>
+ InputTensorBlock;
+ typedef internal::TensorBlock<Index, ScalarNonConst, NumDims, Layout>
+ OutputTensorBlock;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
+ {
+ return this->m_impl.coeffRef(this->srcCoeff(index));
+ }
+
+ template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void writePacket(Index index, const PacketReturnType& x)
+ {
+ static const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
+ EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
+
+ if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) &&
+ this->m_dim.actualDim() == 0) ||
+ (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) &&
+ this->m_dim.actualDim() == NumInputDims - 1)) {
+ // m_stride is equal to 1, so let's avoid the integer division.
+ eigen_assert(this->m_stride == 1);
+ EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
+ for (int i = 0; i < packetSize; ++i) {
+ this->m_impl.coeffRef(inputIndex) = values[i];
+ inputIndex += this->m_inputStride;
+ }
+ } else if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) &&
+ this->m_dim.actualDim() == NumInputDims - 1) ||
+ (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) &&
+ this->m_dim.actualDim() == 0)) {
+ // m_stride is aways greater than index, so let's avoid the integer division.
+ eigen_assert(this->m_stride > index);
+ this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
+ } else {
+ const Index idx = index / this->m_stride;
+ const Index rem = index - idx * this->m_stride;
+ if (rem + packetSize <= this->m_stride) {
+ const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
+ this->m_impl.template writePacket<StoreMode>(inputIndex, x);
+ } else {
+ // Cross stride boundary. Fallback to slow path.
+ EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
+ internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
+ for (int i = 0; i < packetSize; ++i) {
+ this->coeffRef(index) = values[i];
+ ++index;
+ }
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(
+ const OutputTensorBlock& output_block) {
+ // Calculate input block sizes.
+ const DSizes<Index, NumDims>& output_block_sizes =
+ output_block.block_sizes();
+ const DSizes<Index, NumDims>& output_block_strides =
+ output_block.block_strides();
+ const Index chip_dim = this->m_dim.actualDim();
+ DSizes<Index, NumInputDims> input_block_sizes;
+ DSizes<Index, NumInputDims> input_block_strides;
+ for (Index i = 0; i < NumInputDims; ++i) {
+ if (i < chip_dim) {
+ input_block_sizes[i] = output_block_sizes[i];
+ input_block_strides[i] = output_block_strides[i];
+ } else if (i > chip_dim) {
+ input_block_sizes[i] = output_block_sizes[i - 1];
+ input_block_strides[i] = output_block_strides[i - 1];
+ } else {
+ input_block_sizes[i] = 1;
+ }
+ }
+ // Fix up input_block_stride for chip dimension.
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ if (chip_dim == 0) {
+ input_block_strides[chip_dim] = 1;
+ } else {
+ input_block_strides[chip_dim] = input_block_strides[chip_dim - 1] *
+ input_block_sizes[chip_dim - 1];
+ }
+ } else {
+ if (chip_dim == NumInputDims - 1) {
+ input_block_strides[chip_dim] = 1;
+ } else {
+ input_block_strides[chip_dim] = input_block_strides[chip_dim - 1] *
+ input_block_sizes[chip_dim - 1];
+ }
+ }
+ // Write input block.
+ this->m_impl.writeBlock(
+ InputTensorBlock(this->srcCoeff(output_block.first_coeff_index()),
+ input_block_sizes,
+ input_block_strides,
+ this->m_inputStrides,
+ const_cast<ScalarNonConst*>(output_block.data())));
+ }
+
+};
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H