aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/SparseLU/SparseLU.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/SparseLU/SparseLU.h')
-rw-r--r--third_party/eigen3/Eigen/src/SparseLU/SparseLU.h762
1 files changed, 0 insertions, 762 deletions
diff --git a/third_party/eigen3/Eigen/src/SparseLU/SparseLU.h b/third_party/eigen3/Eigen/src/SparseLU/SparseLU.h
deleted file mode 100644
index 7a9aeec2da..0000000000
--- a/third_party/eigen3/Eigen/src/SparseLU/SparseLU.h
+++ /dev/null
@@ -1,762 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_SPARSE_LU_H
-#define EIGEN_SPARSE_LU_H
-
-namespace Eigen {
-
-template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::Index> > class SparseLU;
-template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
-template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
-
-/** \ingroup SparseLU_Module
- * \class SparseLU
- *
- * \brief Sparse supernodal LU factorization for general matrices
- *
- * This class implements the supernodal LU factorization for general matrices.
- * It uses the main techniques from the sequential SuperLU package
- * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
- * and complex arithmetics with single and double precision, depending on the
- * scalar type of your input matrix.
- * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
- * It benefits directly from the built-in high-performant Eigen BLAS routines.
- * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
- * enable a better optimization from the compiler. For best performance,
- * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
- *
- * An important parameter of this class is the ordering method. It is used to reorder the columns
- * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
- * numerical factorization. The cheapest method available is COLAMD.
- * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
- * built-in and external ordering methods.
- *
- * Simple example with key steps
- * \code
- * VectorXd x(n), b(n);
- * SparseMatrix<double, ColMajor> A;
- * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver;
- * // fill A and b;
- * // Compute the ordering permutation vector from the structural pattern of A
- * solver.analyzePattern(A);
- * // Compute the numerical factorization
- * solver.factorize(A);
- * //Use the factors to solve the linear system
- * x = solver.solve(b);
- * \endcode
- *
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
- *
- * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
- * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
- * If this is the case for your matrices, you can try the basic scaling method at
- * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
- *
- * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
- * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
- *
- *
- * \sa \ref TutorialSparseDirectSolvers
- * \sa \ref OrderingMethods_Module
- */
-template <typename _MatrixType, typename _OrderingType>
-class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index>
-{
- public:
- typedef _MatrixType MatrixType;
- typedef _OrderingType OrderingType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
- typedef internal::MappedSuperNodalMatrix<Scalar, Index> SCMatrix;
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
- typedef Matrix<Index,Dynamic,1> IndexVector;
- typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
- typedef internal::SparseLUImpl<Scalar, Index> Base;
-
- public:
- SparseLU():m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
- {
- initperfvalues();
- }
- SparseLU(const MatrixType& matrix):m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
- {
- initperfvalues();
- compute(matrix);
- }
-
- ~SparseLU()
- {
- // Free all explicit dynamic pointers
- }
-
- void analyzePattern (const MatrixType& matrix);
- void factorize (const MatrixType& matrix);
- void simplicialfactorize(const MatrixType& matrix);
-
- /**
- * Compute the symbolic and numeric factorization of the input sparse matrix.
- * The input matrix should be in column-major storage.
- */
- void compute (const MatrixType& matrix)
- {
- // Analyze
- analyzePattern(matrix);
- //Factorize
- factorize(matrix);
- }
-
- inline Index rows() const { return m_mat.rows(); }
- inline Index cols() const { return m_mat.cols(); }
- /** Indicate that the pattern of the input matrix is symmetric */
- void isSymmetric(bool sym)
- {
- m_symmetricmode = sym;
- }
-
- /** \returns an expression of the matrix L, internally stored as supernodes
- * The only operation available with this expression is the triangular solve
- * \code
- * y = b; matrixL().solveInPlace(y);
- * \endcode
- */
- SparseLUMatrixLReturnType<SCMatrix> matrixL() const
- {
- return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
- }
- /** \returns an expression of the matrix U,
- * The only operation available with this expression is the triangular solve
- * \code
- * y = b; matrixU().solveInPlace(y);
- * \endcode
- */
- SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,Index> > matrixU() const
- {
- return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,Index> >(m_Lstore, m_Ustore);
- }
-
- /**
- * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
- * \sa colsPermutation()
- */
- inline const PermutationType& rowsPermutation() const
- {
- return m_perm_r;
- }
- /**
- * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
- * \sa rowsPermutation()
- */
- inline const PermutationType& colsPermutation() const
- {
- return m_perm_c;
- }
- /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
- void setPivotThreshold(const RealScalar& thresh)
- {
- m_diagpivotthresh = thresh;
- }
-
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
- *
- * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
- {
- eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
- eigen_assert(rows()==B.rows()
- && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
- return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
- }
-
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<SparseLU, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
- {
- eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
- eigen_assert(rows()==B.rows()
- && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
- return internal::sparse_solve_retval<SparseLU, Rhs>(*this, B.derived());
- }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
- * \c InvalidInput if the input matrix is invalid
- *
- * \sa iparm()
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /**
- * \returns A string describing the type of error
- */
- std::string lastErrorMessage() const
- {
- return m_lastError;
- }
-
- template<typename Rhs, typename Dest>
- bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
- {
- Dest& X(X_base.derived());
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
-
- // Permute the right hand side to form X = Pr*B
- // on return, X is overwritten by the computed solution
- X.resize(B.rows(),B.cols());
-
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
- for(Index j = 0; j < B.cols(); ++j)
- X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
-
- //Forward substitution with L
- this->matrixL().solveInPlace(X);
- this->matrixU().solveInPlace(X);
-
- // Permute back the solution
- for (Index j = 0; j < B.cols(); ++j)
- X.col(j) = colsPermutation().inverse() * X.col(j);
-
- return true;
- }
-
- /**
- * \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), signDeterminant()
- */
- Scalar absDeterminant()
- {
- using std::abs;
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
- // Initialize with the determinant of the row matrix
- Scalar det = Scalar(1.);
- //Note that the diagonal blocks of U are stored in supernodes,
- // which are available in the L part :)
- for (Index j = 0; j < this->cols(); ++j)
- {
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
- {
- if(it.row() < j) continue;
- if(it.row() == j)
- {
- det *= abs(it.value());
- break;
- }
- }
- }
- return det;
- }
-
- /** \returns the natural log of the absolute value of the determinant of the matrix
- * of which **this is the QR decomposition
- *
- * \note This method is useful to work around the risk of overflow/underflow that's
- * inherent to the determinant computation.
- *
- * \sa absDeterminant(), signDeterminant()
- */
- Scalar logAbsDeterminant() const
- {
- using std::log;
- using std::abs;
-
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
- Scalar det = Scalar(0.);
- for (Index j = 0; j < this->cols(); ++j)
- {
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
- {
- if(it.row() < j) continue;
- if(it.row() == j)
- {
- det += log(abs(it.value()));
- break;
- }
- }
- }
- return det;
- }
-
- /** \returns A number representing the sign of the determinant
- *
- * \sa absDeterminant(), logAbsDeterminant()
- */
- Scalar signDeterminant()
- {
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
- return Scalar(m_detPermR);
- }
-
- protected:
- // Functions
- void initperfvalues()
- {
- m_perfv.panel_size = 1;
- m_perfv.relax = 1;
- m_perfv.maxsuper = 128;
- m_perfv.rowblk = 16;
- m_perfv.colblk = 8;
- m_perfv.fillfactor = 20;
- }
-
- // Variables
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- bool m_factorizationIsOk;
- bool m_analysisIsOk;
- std::string m_lastError;
- NCMatrix m_mat; // The input (permuted ) matrix
- SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
- MappedSparseMatrix<Scalar,ColMajor,Index> m_Ustore; // The upper triangular matrix
- PermutationType m_perm_c; // Column permutation
- PermutationType m_perm_r ; // Row permutation
- IndexVector m_etree; // Column elimination tree
-
- typename Base::GlobalLU_t m_glu;
-
- // SparseLU options
- bool m_symmetricmode;
- // values for performance
- internal::perfvalues<Index> m_perfv;
- RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
- Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
- Index m_detPermR; // Determinant of the coefficient matrix
- private:
- // Disable copy constructor
- SparseLU (const SparseLU& );
-
-}; // End class SparseLU
-
-
-
-// Functions needed by the anaysis phase
-/**
- * Compute the column permutation to minimize the fill-in
- *
- * - Apply this permutation to the input matrix -
- *
- * - Compute the column elimination tree on the permuted matrix
- *
- * - Postorder the elimination tree and the column permutation
- *
- */
-template <typename MatrixType, typename OrderingType>
-void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
-{
-
- //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
-
- OrderingType ord;
- ord(mat,m_perm_c);
-
- // Apply the permutation to the column of the input matrix
- //First copy the whole input matrix.
- m_mat = mat;
- if (m_perm_c.size()) {
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
- //Then, permute only the column pointers
- const Index * outerIndexPtr;
- if (mat.isCompressed()) outerIndexPtr = mat.outerIndexPtr();
- else
- {
- Index *outerIndexPtr_t = new Index[mat.cols()+1];
- for(Index i = 0; i <= mat.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
- outerIndexPtr = outerIndexPtr_t;
- }
- for (Index i = 0; i < mat.cols(); i++)
- {
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
- }
- if(!mat.isCompressed()) delete[] outerIndexPtr;
- }
- // Compute the column elimination tree of the permuted matrix
- IndexVector firstRowElt;
- internal::coletree(m_mat, m_etree,firstRowElt);
-
- // In symmetric mode, do not do postorder here
- if (!m_symmetricmode) {
- IndexVector post, iwork;
- // Post order etree
- internal::treePostorder(m_mat.cols(), m_etree, post);
-
-
- // Renumber etree in postorder
- Index m = m_mat.cols();
- iwork.resize(m+1);
- for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
- m_etree = iwork;
-
- // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
- PermutationType post_perm(m);
- for (Index i = 0; i < m; i++)
- post_perm.indices()(i) = post(i);
-
- // Combine the two permutations : postorder the permutation for future use
- if(m_perm_c.size()) {
- m_perm_c = post_perm * m_perm_c;
- }
-
- } // end postordering
-
- m_analysisIsOk = true;
-}
-
-// Functions needed by the numerical factorization phase
-
-
-/**
- * - Numerical factorization
- * - Interleaved with the symbolic factorization
- * On exit, info is
- *
- * = 0: successful factorization
- *
- * > 0: if info = i, and i is
- *
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
- * been completed, but the factor U is exactly singular,
- * and division by zero will occur if it is used to solve a
- * system of equations.
- *
- * > A->ncol: number of bytes allocated when memory allocation
- * failure occurred, plus A->ncol. If lwork = -1, it is
- * the estimated amount of space needed, plus A->ncol.
- */
-template <typename MatrixType, typename OrderingType>
-void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
-{
- using internal::emptyIdxLU;
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
- eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
-
- typedef typename IndexVector::Scalar Index;
-
-
- // Apply the column permutation computed in analyzepattern()
- // m_mat = matrix * m_perm_c.inverse();
- m_mat = matrix;
- if (m_perm_c.size())
- {
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
- //Then, permute only the column pointers
- const Index * outerIndexPtr;
- if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
- else
- {
- Index* outerIndexPtr_t = new Index[matrix.cols()+1];
- for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
- outerIndexPtr = outerIndexPtr_t;
- }
- for (Index i = 0; i < matrix.cols(); i++)
- {
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
- }
- if(!matrix.isCompressed()) delete[] outerIndexPtr;
- }
- else
- { //FIXME This should not be needed if the empty permutation is handled transparently
- m_perm_c.resize(matrix.cols());
- for(Index i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
- }
-
- Index m = m_mat.rows();
- Index n = m_mat.cols();
- Index nnz = m_mat.nonZeros();
- Index maxpanel = m_perfv.panel_size * m;
- // Allocate working storage common to the factor routines
- Index lwork = 0;
- Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
- if (info)
- {
- m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
- m_factorizationIsOk = false;
- return ;
- }
-
- // Set up pointers for integer working arrays
- IndexVector segrep(m); segrep.setZero();
- IndexVector parent(m); parent.setZero();
- IndexVector xplore(m); xplore.setZero();
- IndexVector repfnz(maxpanel);
- IndexVector panel_lsub(maxpanel);
- IndexVector xprune(n); xprune.setZero();
- IndexVector marker(m*internal::LUNoMarker); marker.setZero();
-
- repfnz.setConstant(-1);
- panel_lsub.setConstant(-1);
-
- // Set up pointers for scalar working arrays
- ScalarVector dense;
- dense.setZero(maxpanel);
- ScalarVector tempv;
- tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
-
- // Compute the inverse of perm_c
- PermutationType iperm_c(m_perm_c.inverse());
-
- // Identify initial relaxed snodes
- IndexVector relax_end(n);
- if ( m_symmetricmode == true )
- Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
- else
- Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
-
-
- m_perm_r.resize(m);
- m_perm_r.indices().setConstant(-1);
- marker.setConstant(-1);
- m_detPermR = 1; // Record the determinant of the row permutation
-
- m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
- m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
-
- // Work on one 'panel' at a time. A panel is one of the following :
- // (a) a relaxed supernode at the bottom of the etree, or
- // (b) panel_size contiguous columns, <panel_size> defined by the user
- Index jcol;
- IndexVector panel_histo(n);
- Index pivrow; // Pivotal row number in the original row matrix
- Index nseg1; // Number of segments in U-column above panel row jcol
- Index nseg; // Number of segments in each U-column
- Index irep;
- Index i, k, jj;
- for (jcol = 0; jcol < n; )
- {
- // Adjust panel size so that a panel won't overlap with the next relaxed snode.
- Index panel_size = m_perfv.panel_size; // upper bound on panel width
- for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
- {
- if (relax_end(k) != emptyIdxLU)
- {
- panel_size = k - jcol;
- break;
- }
- }
- if (k == n)
- panel_size = n - jcol;
-
- // Symbolic outer factorization on a panel of columns
- Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
-
- // Numeric sup-panel updates in topological order
- Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
-
- // Sparse LU within the panel, and below the panel diagonal
- for ( jj = jcol; jj< jcol + panel_size; jj++)
- {
- k = (jj - jcol) * m; // Column index for w-wide arrays
-
- nseg = nseg1; // begin after all the panel segments
- //Depth-first-search for the current column
- VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
- VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
- info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
- if ( info )
- {
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- return;
- }
- // Numeric updates to this column
- VectorBlock<ScalarVector> dense_k(dense, k, m);
- VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
- info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
- if ( info )
- {
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- return;
- }
-
- // Copy the U-segments to ucol(*)
- info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
- if ( info )
- {
- m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- return;
- }
-
- // Form the L-segment
- info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
- if ( info )
- {
- m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
- std::ostringstream returnInfo;
- returnInfo << info;
- m_lastError += returnInfo.str();
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- return;
- }
-
- // Update the determinant of the row permutation matrix
- if (pivrow != jj) m_detPermR *= -1;
-
- // Prune columns (0:jj-1) using column jj
- Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
-
- // Reset repfnz for this column
- for (i = 0; i < nseg; i++)
- {
- irep = segrep(i);
- repfnz_k(irep) = emptyIdxLU;
- }
- } // end SparseLU within the panel
- jcol += panel_size; // Move to the next panel
- } // end for -- end elimination
-
- // Count the number of nonzeros in factors
- Base::countnz(n, m_nnzL, m_nnzU, m_glu);
- // Apply permutation to the L subscripts
- Base::fixupL(n, m_perm_r.indices(), m_glu);
-
- // Create supernode matrix L
- m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
- // Create the column major upper sparse matrix U;
- new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, Index> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
-
- m_info = Success;
- m_factorizationIsOk = true;
-}
-
-template<typename MappedSupernodalType>
-struct SparseLUMatrixLReturnType : internal::no_assignment_operator
-{
- typedef typename MappedSupernodalType::Index Index;
- typedef typename MappedSupernodalType::Scalar Scalar;
- SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
- { }
- Index rows() { return m_mapL.rows(); }
- Index cols() { return m_mapL.cols(); }
- template<typename Dest>
- void solveInPlace( MatrixBase<Dest> &X) const
- {
- m_mapL.solveInPlace(X);
- }
- const MappedSupernodalType& m_mapL;
-};
-
-template<typename MatrixLType, typename MatrixUType>
-struct SparseLUMatrixUReturnType : internal::no_assignment_operator
-{
- typedef typename MatrixLType::Index Index;
- typedef typename MatrixLType::Scalar Scalar;
- SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
- : m_mapL(mapL),m_mapU(mapU)
- { }
- Index rows() { return m_mapL.rows(); }
- Index cols() { return m_mapL.cols(); }
-
- template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
- {
- Index nrhs = X.cols();
- Index n = X.rows();
- // Backward solve with U
- for (Index k = m_mapL.nsuper(); k >= 0; k--)
- {
- Index fsupc = m_mapL.supToCol()[k];
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
- Index luptr = m_mapL.colIndexPtr()[fsupc];
-
- if (nsupc == 1)
- {
- for (Index j = 0; j < nrhs; j++)
- {
- X(fsupc, j) /= m_mapL.valuePtr()[luptr];
- }
- }
- else
- {
- Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
- Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
- U = A.template triangularView<Upper>().solve(U);
- }
-
- for (Index j = 0; j < nrhs; ++j)
- {
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
- {
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
- for ( ; it; ++it)
- {
- Index irow = it.index();
- X(irow, j) -= X(jcol, j) * it.value();
- }
- }
- }
- } // End For U-solve
- }
- const MatrixLType& m_mapL;
- const MatrixUType& m_mapU;
-};
-
-namespace internal {
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
- : solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
-{
- typedef SparseLU<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct sparse_solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
- : sparse_solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
-{
- typedef SparseLU<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-} // end namespace internal
-
-} // End namespace Eigen
-
-#endif