aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/SparseCore/AmbiVector.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/SparseCore/AmbiVector.h')
-rw-r--r--third_party/eigen3/Eigen/src/SparseCore/AmbiVector.h373
1 files changed, 0 insertions, 373 deletions
diff --git a/third_party/eigen3/Eigen/src/SparseCore/AmbiVector.h b/third_party/eigen3/Eigen/src/SparseCore/AmbiVector.h
deleted file mode 100644
index 17fff96a78..0000000000
--- a/third_party/eigen3/Eigen/src/SparseCore/AmbiVector.h
+++ /dev/null
@@ -1,373 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AMBIVECTOR_H
-#define EIGEN_AMBIVECTOR_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * Hybrid sparse/dense vector class designed for intensive read-write operations.
- *
- * See BasicSparseLLT and SparseProduct for usage examples.
- */
-template<typename _Scalar, typename _Index>
-class AmbiVector
-{
- public:
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- AmbiVector(Index size)
- : m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
- {
- resize(size);
- }
-
- void init(double estimatedDensity);
- void init(int mode);
-
- Index nonZeros() const;
-
- /** Specifies a sub-vector to work on */
- void setBounds(Index start, Index end) { m_start = start; m_end = end; }
-
- void setZero();
-
- void restart();
- Scalar& coeffRef(Index i);
- Scalar& coeff(Index i);
-
- class Iterator;
-
- ~AmbiVector() { delete[] m_buffer; }
-
- void resize(Index size)
- {
- if (m_allocatedSize < size)
- reallocate(size);
- m_size = size;
- }
-
- Index size() const { return m_size; }
-
- protected:
-
- void reallocate(Index size)
- {
- // if the size of the matrix is not too large, let's allocate a bit more than needed such
- // that we can handle dense vector even in sparse mode.
- delete[] m_buffer;
- if (size<1000)
- {
- Index allocSize = (size * sizeof(ListEl))/sizeof(Scalar);
- m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl);
- m_buffer = new Scalar[allocSize];
- }
- else
- {
- m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl);
- m_buffer = new Scalar[size];
- }
- m_size = size;
- m_start = 0;
- m_end = m_size;
- }
-
- void reallocateSparse()
- {
- Index copyElements = m_allocatedElements;
- m_allocatedElements = (std::min)(Index(m_allocatedElements*1.5),m_size);
- Index allocSize = m_allocatedElements * sizeof(ListEl);
- allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0);
- Scalar* newBuffer = new Scalar[allocSize];
- memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
- delete[] m_buffer;
- m_buffer = newBuffer;
- }
-
- protected:
- // element type of the linked list
- struct ListEl
- {
- Index next;
- Index index;
- Scalar value;
- };
-
- // used to store data in both mode
- Scalar* m_buffer;
- Scalar m_zero;
- Index m_size;
- Index m_start;
- Index m_end;
- Index m_allocatedSize;
- Index m_allocatedElements;
- Index m_mode;
-
- // linked list mode
- Index m_llStart;
- Index m_llCurrent;
- Index m_llSize;
-};
-
-/** \returns the number of non zeros in the current sub vector */
-template<typename _Scalar,typename _Index>
-_Index AmbiVector<_Scalar,_Index>::nonZeros() const
-{
- if (m_mode==IsSparse)
- return m_llSize;
- else
- return m_end - m_start;
-}
-
-template<typename _Scalar,typename _Index>
-void AmbiVector<_Scalar,_Index>::init(double estimatedDensity)
-{
- if (estimatedDensity>0.1)
- init(IsDense);
- else
- init(IsSparse);
-}
-
-template<typename _Scalar,typename _Index>
-void AmbiVector<_Scalar,_Index>::init(int mode)
-{
- m_mode = mode;
- if (m_mode==IsSparse)
- {
- m_llSize = 0;
- m_llStart = -1;
- }
-}
-
-/** Must be called whenever we might perform a write access
- * with an index smaller than the previous one.
- *
- * Don't worry, this function is extremely cheap.
- */
-template<typename _Scalar,typename _Index>
-void AmbiVector<_Scalar,_Index>::restart()
-{
- m_llCurrent = m_llStart;
-}
-
-/** Set all coefficients of current subvector to zero */
-template<typename _Scalar,typename _Index>
-void AmbiVector<_Scalar,_Index>::setZero()
-{
- if (m_mode==IsDense)
- {
- for (Index i=m_start; i<m_end; ++i)
- m_buffer[i] = Scalar(0);
- }
- else
- {
- eigen_assert(m_mode==IsSparse);
- m_llSize = 0;
- m_llStart = -1;
- }
-}
-
-template<typename _Scalar,typename _Index>
-_Scalar& AmbiVector<_Scalar,_Index>::coeffRef(_Index i)
-{
- if (m_mode==IsDense)
- return m_buffer[i];
- else
- {
- ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
- // TODO factorize the following code to reduce code generation
- eigen_assert(m_mode==IsSparse);
- if (m_llSize==0)
- {
- // this is the first element
- m_llStart = 0;
- m_llCurrent = 0;
- ++m_llSize;
- llElements[0].value = Scalar(0);
- llElements[0].index = i;
- llElements[0].next = -1;
- return llElements[0].value;
- }
- else if (i<llElements[m_llStart].index)
- {
- // this is going to be the new first element of the list
- ListEl& el = llElements[m_llSize];
- el.value = Scalar(0);
- el.index = i;
- el.next = m_llStart;
- m_llStart = m_llSize;
- ++m_llSize;
- m_llCurrent = m_llStart;
- return el.value;
- }
- else
- {
- Index nextel = llElements[m_llCurrent].next;
- eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
- while (nextel >= 0 && llElements[nextel].index<=i)
- {
- m_llCurrent = nextel;
- nextel = llElements[nextel].next;
- }
-
- if (llElements[m_llCurrent].index==i)
- {
- // the coefficient already exists and we found it !
- return llElements[m_llCurrent].value;
- }
- else
- {
- if (m_llSize>=m_allocatedElements)
- {
- reallocateSparse();
- llElements = reinterpret_cast<ListEl*>(m_buffer);
- }
- eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode");
- // let's insert a new coefficient
- ListEl& el = llElements[m_llSize];
- el.value = Scalar(0);
- el.index = i;
- el.next = llElements[m_llCurrent].next;
- llElements[m_llCurrent].next = m_llSize;
- ++m_llSize;
- return el.value;
- }
- }
- }
-}
-
-template<typename _Scalar,typename _Index>
-_Scalar& AmbiVector<_Scalar,_Index>::coeff(_Index i)
-{
- if (m_mode==IsDense)
- return m_buffer[i];
- else
- {
- ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
- eigen_assert(m_mode==IsSparse);
- if ((m_llSize==0) || (i<llElements[m_llStart].index))
- {
- return m_zero;
- }
- else
- {
- Index elid = m_llStart;
- while (elid >= 0 && llElements[elid].index<i)
- elid = llElements[elid].next;
-
- if (llElements[elid].index==i)
- return llElements[m_llCurrent].value;
- else
- return m_zero;
- }
- }
-}
-
-/** Iterator over the nonzero coefficients */
-template<typename _Scalar,typename _Index>
-class AmbiVector<_Scalar,_Index>::Iterator
-{
- public:
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- /** Default constructor
- * \param vec the vector on which we iterate
- * \param epsilon the minimal value used to prune zero coefficients.
- * In practice, all coefficients having a magnitude smaller than \a epsilon
- * are skipped.
- */
- Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0)
- : m_vector(vec)
- {
- using std::abs;
- m_epsilon = epsilon;
- m_isDense = m_vector.m_mode==IsDense;
- if (m_isDense)
- {
- m_currentEl = 0; // this is to avoid a compilation warning
- m_cachedValue = 0; // this is to avoid a compilation warning
- m_cachedIndex = m_vector.m_start-1;
- ++(*this);
- }
- else
- {
- ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
- m_currentEl = m_vector.m_llStart;
- while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon)
- m_currentEl = llElements[m_currentEl].next;
- if (m_currentEl<0)
- {
- m_cachedValue = 0; // this is to avoid a compilation warning
- m_cachedIndex = -1;
- }
- else
- {
- m_cachedIndex = llElements[m_currentEl].index;
- m_cachedValue = llElements[m_currentEl].value;
- }
- }
- }
-
- Index index() const { return m_cachedIndex; }
- Scalar value() const { return m_cachedValue; }
-
- operator bool() const { return m_cachedIndex>=0; }
-
- Iterator& operator++()
- {
- using std::abs;
- if (m_isDense)
- {
- do {
- ++m_cachedIndex;
- } while (m_cachedIndex<m_vector.m_end && abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon);
- if (m_cachedIndex<m_vector.m_end)
- m_cachedValue = m_vector.m_buffer[m_cachedIndex];
- else
- m_cachedIndex=-1;
- }
- else
- {
- ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
- do {
- m_currentEl = llElements[m_currentEl].next;
- } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<m_epsilon);
- if (m_currentEl<0)
- {
- m_cachedIndex = -1;
- }
- else
- {
- m_cachedIndex = llElements[m_currentEl].index;
- m_cachedValue = llElements[m_currentEl].value;
- }
- }
- return *this;
- }
-
- protected:
- const AmbiVector& m_vector; // the target vector
- Index m_currentEl; // the current element in sparse/linked-list mode
- RealScalar m_epsilon; // epsilon used to prune zero coefficients
- Index m_cachedIndex; // current coordinate
- Scalar m_cachedValue; // current value
- bool m_isDense; // mode of the vector
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_AMBIVECTOR_H