aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/QR/HouseholderQR.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/QR/HouseholderQR.h')
-rw-r--r--third_party/eigen3/Eigen/src/QR/HouseholderQR.h382
1 files changed, 0 insertions, 382 deletions
diff --git a/third_party/eigen3/Eigen/src/QR/HouseholderQR.h b/third_party/eigen3/Eigen/src/QR/HouseholderQR.h
deleted file mode 100644
index 352dbf3f0e..0000000000
--- a/third_party/eigen3/Eigen/src/QR/HouseholderQR.h
+++ /dev/null
@@ -1,382 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2010 Vincent Lejeune
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_QR_H
-#define EIGEN_QR_H
-
-namespace Eigen {
-
-/** \ingroup QR_Module
- *
- *
- * \class HouseholderQR
- *
- * \brief Householder QR decomposition of a matrix
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
- * The result is stored in a compact way compatible with LAPACK.
- *
- * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
- * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
- *
- * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
- * FullPivHouseholderQR or ColPivHouseholderQR.
- *
- * \sa MatrixBase::householderQr()
- */
-template<typename _MatrixType> class HouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via HouseholderQR::compute(const MatrixType&).
- */
- HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa HouseholderQR()
- */
- HouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_temp(cols),
- m_isInitialized(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- HouseholderQR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_temp(matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include HouseholderQR_solve.cpp
- * Output: \verbinclude HouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const internal::solve_retval<HouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
- }
-
- /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
- *
- * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
- * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
- *
- * Example: \include HouseholderQR_householderQ.cpp
- * Output: \verbinclude HouseholderQR_householderQ.out
- */
- HouseholderSequenceType householderQ() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- * in a LAPACK-compatible way.
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return m_qr;
- }
-
- HouseholderQR& compute(const MatrixType& matrix);
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- protected:
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- RowVectorType m_temp;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-namespace internal {
-
-/** \internal */
-template<typename MatrixQR, typename HCoeffs>
-void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
-{
- typedef typename MatrixQR::Index Index;
- typedef typename MatrixQR::Scalar Scalar;
- typedef typename MatrixQR::RealScalar RealScalar;
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows,cols);
-
- eigen_assert(hCoeffs.size() == size);
-
- typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
-
- for(Index k = 0; k < size; ++k)
- {
- Index remainingRows = rows - k;
- Index remainingCols = cols - k - 1;
-
- RealScalar beta;
- mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
- mat.coeffRef(k,k) = beta;
-
- // apply H to remaining part of m_qr from the left
- mat.bottomRightCorner(remainingRows, remainingCols)
- .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
- }
-}
-
-/** \internal */
-template<typename MatrixQR, typename HCoeffs,
- typename MatrixQRScalar = typename MatrixQR::Scalar,
- bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
-struct householder_qr_inplace_blocked
-{
- // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
- static void run(MatrixQR& mat, HCoeffs& hCoeffs,
- typename MatrixQR::Index maxBlockSize=32,
- typename MatrixQR::Scalar* tempData = 0)
- {
- typedef typename MatrixQR::Index Index;
- typedef typename MatrixQR::Scalar Scalar;
- typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
-
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows, cols);
-
- typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
-
- Index blockSize = (std::min)(maxBlockSize,size);
-
- Index k = 0;
- for (k = 0; k < size; k += blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index tcols = cols - k - bs; // trailing columns
- Index brows = rows-k; // rows of the block
-
- // partition the matrix:
- // A00 | A01 | A02
- // mat = A10 | A11 | A12
- // A20 | A21 | A22
- // and performs the qr dec of [A11^T A12^T]^T
- // and update [A21^T A22^T]^T using level 3 operations.
- // Finally, the algorithm continue on A22
-
- BlockType A11_21 = mat.block(k,k,brows,bs);
- Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
-
- householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
-
- if(tcols)
- {
- BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
- apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
- }
- }
- }
-};
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- const Index rows = dec().rows(), cols = dec().cols();
- const Index rank = (std::min)(rows, cols);
- eigen_assert(rhs().rows() == rows);
-
- typename Rhs::PlainObject c(rhs());
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(
- dec().matrixQR().leftCols(rank),
- dec().hCoeffs().head(rank)).transpose()
- );
-
- dec().matrixQR()
- .topLeftCorner(rank, rank)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(rank));
-
- dst.topRows(rank) = c.topRows(rank);
- dst.bottomRows(cols-rank).setZero();
- }
-};
-
-} // end namespace internal
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
-{
- Index rows = matrix.rows();
- Index cols = matrix.cols();
- Index size = (std::min)(rows,cols);
-
- m_qr = matrix;
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
-
- m_isInitialized = true;
- return *this;
-}
-
-#ifndef __CUDACC__
-/** \return the Householder QR decomposition of \c *this.
- *
- * \sa class HouseholderQR
- */
-template<typename Derived>
-const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::householderQr() const
-{
- return HouseholderQR<PlainObject>(eval());
-}
-#endif // __CUDACC__
-
-} // end namespace Eigen
-
-#endif // EIGEN_QR_H