aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h')
-rw-r--r--third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h582
1 files changed, 0 insertions, 582 deletions
diff --git a/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h b/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h
deleted file mode 100644
index 4824880f51..0000000000
--- a/third_party/eigen3/Eigen/src/QR/ColPivHouseholderQR.h
+++ /dev/null
@@ -1,582 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-
-namespace Eigen {
-
-/** \ingroup QR_Module
- *
- * \class ColPivHouseholderQR
- *
- * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
- * upper triangular matrix.
- *
- * This decomposition performs column pivoting in order to be rank-revealing and improve
- * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
- *
- * \sa MatrixBase::colPivHouseholderQr()
- */
-template<typename _MatrixType> class ColPivHouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
- typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- private:
-
- typedef typename PermutationType::Index PermIndexType;
-
- public:
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
- */
- ColPivHouseholderQR()
- : m_qr(),
- m_hCoeffs(),
- m_colsPermutation(),
- m_colsTranspositions(),
- m_temp(),
- m_colSqNorms(),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa ColPivHouseholderQR()
- */
- ColPivHouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_colsPermutation(PermIndexType(cols)),
- m_colsTranspositions(cols),
- m_temp(cols),
- m_colSqNorms(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- ColPivHouseholderQR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_colsPermutation(PermIndexType(matrix.cols())),
- m_colsTranspositions(matrix.cols()),
- m_temp(matrix.cols()),
- m_colSqNorms(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- compute(matrix);
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include ColPivHouseholderQR_solve.cpp
- * Output: \verbinclude ColPivHouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const internal::solve_retval<ColPivHouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return internal::solve_retval<ColPivHouseholderQR, Rhs>(*this, b.derived());
- }
-
- HouseholderSequenceType householderQ(void) const;
- HouseholderSequenceType matrixQ(void) const
- {
- return householderQ();
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- /** \returns a reference to the matrix where the result Householder QR is stored
- * \warning The strict lower part of this matrix contains internal values.
- * Only the upper triangular part should be referenced. To get it, use
- * \code matrixR().template triangularView<Upper>() \endcode
- * For rank-deficient matrices, use
- * \code
- * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
- * \endcode
- */
- const MatrixType& matrixR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- ColPivHouseholderQR& compute(const MatrixType& matrix);
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_colsPermutation;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns the inverse of the matrix of which *this is the QR decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- */
- inline const
- internal::solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType>
- inverse() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return internal::solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
- }
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * QR decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- ColPivHouseholderQR& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
- }
-
- /** \returns the number of nonzero pivots in the QR decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of R.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- /** \brief Reports whether the QR factorization was succesful.
- *
- * \note This function always returns \c Success. It is provided for compatibility
- * with other factorization routines.
- * \returns \c Success
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return Success;
- }
-
- protected:
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- PermutationType m_colsPermutation;
- IntRowVectorType m_colsTranspositions;
- RowVectorType m_temp;
- RealRowVectorType m_colSqNorms;
- bool m_isInitialized, m_usePrescribedThreshold;
- RealScalar m_prescribedThreshold, m_maxpivot;
- Index m_nonzero_pivots;
- Index m_det_pq;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
-{
- using std::abs;
- Index rows = matrix.rows();
- Index cols = matrix.cols();
- Index size = matrix.diagonalSize();
-
- // the column permutation is stored as int indices, so just to be sure:
- eigen_assert(cols<=NumTraits<int>::highest());
-
- m_qr = matrix;
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- m_colsTranspositions.resize(matrix.cols());
- Index number_of_transpositions = 0;
-
- m_colSqNorms.resize(cols);
- for(Index k = 0; k < cols; ++k)
- m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
-
- RealScalar threshold_helper = m_colSqNorms.maxCoeff() * numext::abs2(NumTraits<Scalar>::epsilon()) / RealScalar(rows);
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for(Index k = 0; k < size; ++k)
- {
- // first, we look up in our table m_colSqNorms which column has the biggest squared norm
- Index biggest_col_index;
- RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index);
- biggest_col_index += k;
-
- // since our table m_colSqNorms accumulates imprecision at every step, we must now recompute
- // the actual squared norm of the selected column.
- // Note that not doing so does result in solve() sometimes returning inf/nan values
- // when running the unit test with 1000 repetitions.
- biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm();
-
- // we store that back into our table: it can't hurt to correct our table.
- m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
-
- // if the current biggest column is smaller than epsilon times the initial biggest column,
- // terminate to avoid generating nan/inf values.
- // Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so)
- // repetitions of the unit test, with the result of solve() filled with large values of the order
- // of 1/(size*epsilon).
- if(biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
- {
- m_nonzero_pivots = k;
- m_hCoeffs.tail(size-k).setZero();
- m_qr.bottomRightCorner(rows-k,cols-k)
- .template triangularView<StrictlyLower>()
- .setZero();
- break;
- }
-
- // apply the transposition to the columns
- m_colsTranspositions.coeffRef(k) = biggest_col_index;
- if(k != biggest_col_index) {
- m_qr.col(k).swap(m_qr.col(biggest_col_index));
- std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index));
- ++number_of_transpositions;
- }
-
- // generate the householder vector, store it below the diagonal
- RealScalar beta;
- m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
-
- // apply the householder transformation to the diagonal coefficient
- m_qr.coeffRef(k,k) = beta;
-
- // remember the maximum absolute value of diagonal coefficients
- if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
-
- // apply the householder transformation
- m_qr.bottomRightCorner(rows-k, cols-k-1)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
-
- // update our table of squared norms of the columns
- m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2();
- }
-
- m_colsPermutation.setIdentity(PermIndexType(cols));
- for(PermIndexType k = 0; k < m_nonzero_pivots; ++k)
- m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- m_isInitialized = true;
-
- return *this;
-}
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<ColPivHouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
-
- const Index cols = dec().cols(),
- nonzero_pivots = dec().nonzeroPivots();
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
-
- typename Rhs::PlainObject c(rhs());
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(dec().matrixQR(), dec().hCoeffs())
- .setLength(dec().nonzeroPivots())
- .transpose()
- );
-
- dec().matrixR()
- .topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
- }
-};
-
-} // end namespace internal
-
-/** \returns the matrix Q as a sequence of householder transformations */
-template<typename MatrixType>
-typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
- ::householderQ() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()).setLength(m_nonzero_pivots);
-}
-
-#ifndef __CUDACC__
-/** \return the column-pivoting Householder QR decomposition of \c *this.
- *
- * \sa class ColPivHouseholderQR
- */
-template<typename Derived>
-const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::colPivHouseholderQr() const
-{
- return ColPivHouseholderQR<PlainObject>(eval());
-}
-#endif // __CUDACC__
-
-} // end namespace Eigen
-
-#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H