aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/LU/PartialPivLU.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/LU/PartialPivLU.h')
-rw-r--r--third_party/eigen3/Eigen/src/LU/PartialPivLU.h506
1 files changed, 0 insertions, 506 deletions
diff --git a/third_party/eigen3/Eigen/src/LU/PartialPivLU.h b/third_party/eigen3/Eigen/src/LU/PartialPivLU.h
deleted file mode 100644
index 1d389ecac7..0000000000
--- a/third_party/eigen3/Eigen/src/LU/PartialPivLU.h
+++ /dev/null
@@ -1,506 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PARTIALLU_H
-#define EIGEN_PARTIALLU_H
-
-namespace Eigen {
-
-/** \ingroup LU_Module
- *
- * \class PartialPivLU
- *
- * \brief LU decomposition of a matrix with partial pivoting, and related features
- *
- * \param MatrixType the type of the matrix of which we are computing the LU decomposition
- *
- * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
- * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
- * is a permutation matrix.
- *
- * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
- * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
- * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
- * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
- *
- * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
- * by class FullPivLU.
- *
- * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
- * such as rank computation. If you need these features, use class FullPivLU.
- *
- * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
- * in the general case.
- * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
- *
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
- *
- * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
- */
-template<typename _MatrixType> class PartialPivLU
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
- typedef typename MatrixType::Index Index;
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
- typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
-
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via PartialPivLU::compute(const MatrixType&).
- */
- PartialPivLU();
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa PartialPivLU()
- */
- PartialPivLU(Index size);
-
- /** Constructor.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- *
- * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
- * If you need to deal with non-full rank, use class FullPivLU instead.
- */
- PartialPivLU(const MatrixType& matrix);
-
- PartialPivLU& compute(const MatrixType& matrix);
-
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
- * case, special care is needed, see the documentation of class FullPivLU).
- *
- * \sa matrixL(), matrixU()
- */
- inline const MatrixType& matrixLU() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return m_lu;
- }
-
- /** \returns the permutation matrix P.
- */
- inline const PermutationType& permutationP() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return m_p;
- }
-
- /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
- * *this is the LU decomposition.
- *
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
- * the only requirement in order for the equation to make sense is that
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
- *
- * \returns the solution.
- *
- * Example: \include PartialPivLU_solve.cpp
- * Output: \verbinclude PartialPivLU_solve.out
- *
- * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
- * theoretically exists and is unique regardless of b.
- *
- * \sa TriangularView::solve(), inverse(), computeInverse()
- */
- template<typename Rhs>
- inline const internal::solve_retval<PartialPivLU, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
- }
-
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
- *
- * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
- * invertibility, use class FullPivLU instead.
- *
- * \sa MatrixBase::inverse(), LU::inverse()
- */
- inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
- }
-
- /** \returns the determinant of the matrix of which
- * *this is the LU decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the LU decomposition has already been computed.
- *
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
- * optimized paths.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- *
- * \sa MatrixBase::determinant()
- */
- typename internal::traits<MatrixType>::Scalar determinant() const;
-
- MatrixType reconstructedMatrix() const;
-
- inline Index rows() const { return m_lu.rows(); }
- inline Index cols() const { return m_lu.cols(); }
-
- protected:
- MatrixType m_lu;
- PermutationType m_p;
- TranspositionType m_rowsTranspositions;
- Index m_det_p;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU()
- : m_lu(),
- m_p(),
- m_rowsTranspositions(),
- m_det_p(0),
- m_isInitialized(false)
-{
-}
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU(Index size)
- : m_lu(size, size),
- m_p(size),
- m_rowsTranspositions(size),
- m_det_p(0),
- m_isInitialized(false)
-{
-}
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
- : m_lu(matrix.rows(), matrix.rows()),
- m_p(matrix.rows()),
- m_rowsTranspositions(matrix.rows()),
- m_det_p(0),
- m_isInitialized(false)
-{
- compute(matrix);
-}
-
-namespace internal {
-
-/** \internal This is the blocked version of fullpivlu_unblocked() */
-template<typename Scalar, int StorageOrder, typename PivIndex>
-struct partial_lu_impl
-{
- // FIXME add a stride to Map, so that the following mapping becomes easier,
- // another option would be to create an expression being able to automatically
- // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
- // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
- // and Block.
- typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
- typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
- typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- /** \internal performs the LU decomposition in-place of the matrix \a lu
- * using an unblocked algorithm.
- *
- * In addition, this function returns the row transpositions in the
- * vector \a row_transpositions which must have a size equal to the number
- * of columns of the matrix \a lu, and an integer \a nb_transpositions
- * which returns the actual number of transpositions.
- *
- * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
- */
- static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
- {
- const Index rows = lu.rows();
- const Index cols = lu.cols();
- const Index size = (std::min)(rows,cols);
- nb_transpositions = 0;
- Index first_zero_pivot = -1;
- for(Index k = 0; k < size; ++k)
- {
- Index rrows = rows-k-1;
- Index rcols = cols-k-1;
-
- Index row_of_biggest_in_col;
- RealScalar biggest_in_corner
- = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
- row_of_biggest_in_col += k;
-
- row_transpositions[k] = PivIndex(row_of_biggest_in_col);
-
- if(biggest_in_corner != RealScalar(0))
- {
- if(k != row_of_biggest_in_col)
- {
- lu.row(k).swap(lu.row(row_of_biggest_in_col));
- ++nb_transpositions;
- }
-
- // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
- // overflow but not the actual quotient?
- lu.col(k).tail(rrows) /= lu.coeff(k,k);
- }
- else if(first_zero_pivot==-1)
- {
- // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
- // and continue the factorization such we still have A = PLU
- first_zero_pivot = k;
- }
-
- if(k<rows-1)
- lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
- }
- return first_zero_pivot;
- }
-
- /** \internal performs the LU decomposition in-place of the matrix represented
- * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
- * recursive, blocked algorithm.
- *
- * In addition, this function returns the row transpositions in the
- * vector \a row_transpositions which must have a size equal to the number
- * of columns of the matrix \a lu, and an integer \a nb_transpositions
- * which returns the actual number of transpositions.
- *
- * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
- *
- * \note This very low level interface using pointers, etc. is to:
- * 1 - reduce the number of instanciations to the strict minimum
- * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
- */
- static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
- {
- MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
- MatrixType lu(lu1,0,0,rows,cols);
-
- const Index size = (std::min)(rows,cols);
-
- // if the matrix is too small, no blocking:
- if(size<=16)
- {
- return unblocked_lu(lu, row_transpositions, nb_transpositions);
- }
-
- // automatically adjust the number of subdivisions to the size
- // of the matrix so that there is enough sub blocks:
- Index blockSize;
- {
- blockSize = size/8;
- blockSize = (blockSize/16)*16;
- blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
- }
-
- nb_transpositions = 0;
- Index first_zero_pivot = -1;
- for(Index k = 0; k < size; k+=blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index trows = rows - k - bs; // trailing rows
- Index tsize = size - k - bs; // trailing size
-
- // partition the matrix:
- // A00 | A01 | A02
- // lu = A_0 | A_1 | A_2 = A10 | A11 | A12
- // A20 | A21 | A22
- BlockType A_0(lu,0,0,rows,k);
- BlockType A_2(lu,0,k+bs,rows,tsize);
- BlockType A11(lu,k,k,bs,bs);
- BlockType A12(lu,k,k+bs,bs,tsize);
- BlockType A21(lu,k+bs,k,trows,bs);
- BlockType A22(lu,k+bs,k+bs,trows,tsize);
-
- PivIndex nb_transpositions_in_panel;
- // recursively call the blocked LU algorithm on [A11^T A21^T]^T
- // with a very small blocking size:
- Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
- row_transpositions+k, nb_transpositions_in_panel, 16);
- if(ret>=0 && first_zero_pivot==-1)
- first_zero_pivot = k+ret;
-
- nb_transpositions += nb_transpositions_in_panel;
- // update permutations and apply them to A_0
- for(Index i=k; i<k+bs; ++i)
- {
- Index piv = (row_transpositions[i] += k);
- A_0.row(i).swap(A_0.row(piv));
- }
-
- if(trows)
- {
- // apply permutations to A_2
- for(Index i=k;i<k+bs; ++i)
- A_2.row(i).swap(A_2.row(row_transpositions[i]));
-
- // A12 = A11^-1 A12
- A11.template triangularView<UnitLower>().solveInPlace(A12);
-
- A22.noalias() -= A21 * A12;
- }
- }
- return first_zero_pivot;
- }
-};
-
-/** \internal performs the LU decomposition with partial pivoting in-place.
- */
-template<typename MatrixType, typename TranspositionType>
-void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
-{
- eigen_assert(lu.cols() == row_transpositions.size());
- eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
-
- partial_lu_impl
- <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
- ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
-}
-
-} // end namespace internal
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
-{
- // the row permutation is stored as int indices, so just to be sure:
- eigen_assert(matrix.rows()<NumTraits<int>::highest());
-
- m_lu = matrix;
-
- eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
- const Index size = matrix.rows();
-
- m_rowsTranspositions.resize(size);
-
- typename TranspositionType::Index nb_transpositions;
- internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
- m_det_p = (nb_transpositions%2) ? -1 : 1;
-
- m_p = m_rowsTranspositions;
-
- m_isInitialized = true;
- return *this;
-}
-
-template<typename MatrixType>
-typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
-{
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return Scalar(m_det_p) * m_lu.diagonal().prod();
-}
-
-/** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: P^{-1} L U.
- * This function is provided for debug purpose. */
-template<typename MatrixType>
-MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
-{
- eigen_assert(m_isInitialized && "LU is not initialized.");
- // LU
- MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
- * m_lu.template triangularView<Upper>();
-
- // P^{-1}(LU)
- res = m_p.inverse() * res;
-
- return res;
-}
-
-/***** Implementation of solve() *****************************************************/
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
- : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
- * So we proceed as follows:
- * Step 1: compute c = Pb.
- * Step 2: replace c by the solution x to Lx = c.
- * Step 3: replace c by the solution x to Ux = c.
- */
-
- eigen_assert(rhs().rows() == dec().matrixLU().rows());
-
- // Step 1
- dst = dec().permutationP() * rhs();
-
- // Step 2
- dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
-
- // Step 3
- dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
- }
-};
-
-} // end namespace internal
-
-/******** MatrixBase methods *******/
-
-/** \lu_module
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-#ifndef __CUDACC__
-template<typename Derived>
-inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::partialPivLu() const
-{
- return PartialPivLU<PlainObject>(eval());
-}
-#endif
-
-#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
-/** \lu_module
- *
- * Synonym of partialPivLu().
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-#ifndef __CUDACC__
-template<typename Derived>
-inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::lu() const
-{
- return PartialPivLU<PlainObject>(eval());
-}
-#endif
-
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARTIALLU_H