aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/LU/FullPivLU.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/LU/FullPivLU.h')
-rw-r--r--third_party/eigen3/Eigen/src/LU/FullPivLU.h745
1 files changed, 745 insertions, 0 deletions
diff --git a/third_party/eigen3/Eigen/src/LU/FullPivLU.h b/third_party/eigen3/Eigen/src/LU/FullPivLU.h
new file mode 100644
index 0000000000..971b9da1d4
--- /dev/null
+++ b/third_party/eigen3/Eigen/src/LU/FullPivLU.h
@@ -0,0 +1,745 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_LU_H
+#define EIGEN_LU_H
+
+namespace Eigen {
+
+/** \ingroup LU_Module
+ *
+ * \class FullPivLU
+ *
+ * \brief LU decomposition of a matrix with complete pivoting, and related features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the LU decomposition
+ *
+ * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
+ * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
+ * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
+ * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
+ * zeros are at the end.
+ *
+ * This decomposition provides the generic approach to solving systems of linear equations, computing
+ * the rank, invertibility, inverse, kernel, and determinant.
+ *
+ * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
+ * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
+ * working with the SVD allows to select the smallest singular values of the matrix, something that
+ * the LU decomposition doesn't see.
+ *
+ * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
+ * permutationP(), permutationQ().
+ *
+ * As an exemple, here is how the original matrix can be retrieved:
+ * \include class_FullPivLU.cpp
+ * Output: \verbinclude class_FullPivLU.out
+ *
+ * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
+ */
+template<typename _MatrixType> class FullPivLU
+{
+ public:
+ typedef _MatrixType MatrixType;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
+ typedef typename MatrixType::Index Index;
+ typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
+ typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
+ typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via LU::compute(const MatrixType&).
+ */
+ FullPivLU();
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa FullPivLU()
+ */
+ FullPivLU(Index rows, Index cols);
+
+ /** Constructor.
+ *
+ * \param matrix the matrix of which to compute the LU decomposition.
+ * It is required to be nonzero.
+ */
+ FullPivLU(const MatrixType& matrix);
+
+ /** Computes the LU decomposition of the given matrix.
+ *
+ * \param matrix the matrix of which to compute the LU decomposition.
+ * It is required to be nonzero.
+ *
+ * \returns a reference to *this
+ */
+ FullPivLU& compute(const MatrixType& matrix);
+
+ /** \returns the LU decomposition matrix: the upper-triangular part is U, the
+ * unit-lower-triangular part is L (at least for square matrices; in the non-square
+ * case, special care is needed, see the documentation of class FullPivLU).
+ *
+ * \sa matrixL(), matrixU()
+ */
+ inline const MatrixType& matrixLU() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return m_lu;
+ }
+
+ /** \returns the number of nonzero pivots in the LU decomposition.
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
+ * So that notion isn't really intrinsically interesting, but it is
+ * still useful when implementing algorithms.
+ *
+ * \sa rank()
+ */
+ inline Index nonzeroPivots() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return m_nonzero_pivots;
+ }
+
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
+ * diagonal coefficient of U.
+ */
+ RealScalar maxPivot() const { return m_maxpivot; }
+
+ /** \returns the permutation matrix P
+ *
+ * \sa permutationQ()
+ */
+ inline const PermutationPType& permutationP() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return m_p;
+ }
+
+ /** \returns the permutation matrix Q
+ *
+ * \sa permutationP()
+ */
+ inline const PermutationQType& permutationQ() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return m_q;
+ }
+
+ /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
+ * will form a basis of the kernel.
+ *
+ * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ *
+ * Example: \include FullPivLU_kernel.cpp
+ * Output: \verbinclude FullPivLU_kernel.out
+ *
+ * \sa image()
+ */
+ inline const internal::kernel_retval<FullPivLU> kernel() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return internal::kernel_retval<FullPivLU>(*this);
+ }
+
+ /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
+ * will form a basis of the kernel.
+ *
+ * \param originalMatrix the original matrix, of which *this is the LU decomposition.
+ * The reason why it is needed to pass it here, is that this allows
+ * a large optimization, as otherwise this method would need to reconstruct it
+ * from the LU decomposition.
+ *
+ * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ *
+ * Example: \include FullPivLU_image.cpp
+ * Output: \verbinclude FullPivLU_image.out
+ *
+ * \sa kernel()
+ */
+ inline const internal::image_retval<FullPivLU>
+ image(const MatrixType& originalMatrix) const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return internal::image_retval<FullPivLU>(*this, originalMatrix);
+ }
+
+ /** \return a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the LU decomposition.
+ *
+ * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
+ * the only requirement in order for the equation to make sense is that
+ * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
+ *
+ * \returns a solution.
+ *
+ * \note_about_checking_solutions
+ *
+ * \note_about_arbitrary_choice_of_solution
+ * \note_about_using_kernel_to_study_multiple_solutions
+ *
+ * Example: \include FullPivLU_solve.cpp
+ * Output: \verbinclude FullPivLU_solve.out
+ *
+ * \sa TriangularView::solve(), kernel(), inverse()
+ */
+ template<typename Rhs>
+ inline const internal::solve_retval<FullPivLU, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
+ }
+
+ /** \returns the determinant of the matrix of which
+ * *this is the LU decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the LU decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
+ * optimized paths.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ *
+ * \sa MatrixBase::determinant()
+ */
+ typename internal::traits<MatrixType>::Scalar determinant() const;
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
+ * who need to determine when pivots are to be considered nonzero. This is not used for the
+ * LU decomposition itself.
+ *
+ * When it needs to get the threshold value, Eigen calls threshold(). By default, this
+ * uses a formula to automatically determine a reasonable threshold.
+ * Once you have called the present method setThreshold(const RealScalar&),
+ * your value is used instead.
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A pivot will be considered nonzero if its absolute value is strictly greater than
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
+ * where maxpivot is the biggest pivot.
+ *
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
+ */
+ FullPivLU& setThreshold(const RealScalar& threshold)
+ {
+ m_usePrescribedThreshold = true;
+ m_prescribedThreshold = threshold;
+ return *this;
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
+ * determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code lu.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ FullPivLU& setThreshold(Default_t)
+ {
+ m_usePrescribedThreshold = false;
+ return *this;
+ }
+
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const
+ {
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
+ return m_usePrescribedThreshold ? m_prescribedThreshold
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
+ // and turns out to be identical to Higham's formula used already in LDLt.
+ : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
+ }
+
+ /** \returns the rank of the matrix of which *this is the LU decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index rank() const
+ {
+ using std::abs;
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
+ Index result = 0;
+ for(Index i = 0; i < m_nonzero_pivots; ++i)
+ result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
+ return result;
+ }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index dimensionOfKernel() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return cols() - rank();
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition represents an injective
+ * linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInjective() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return rank() == cols();
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
+ * linear map; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isSurjective() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return rank() == rows();
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition is invertible.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInvertible() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return isInjective() && (m_lu.rows() == m_lu.cols());
+ }
+
+ /** \returns the inverse of the matrix of which *this is the LU decomposition.
+ *
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
+ * Use isInvertible() to first determine whether this matrix is invertible.
+ *
+ * \sa MatrixBase::inverse()
+ */
+ inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
+ return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
+ (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
+ }
+
+ MatrixType reconstructedMatrix() const;
+
+ inline Index rows() const { return m_lu.rows(); }
+ inline Index cols() const { return m_lu.cols(); }
+
+ protected:
+ MatrixType m_lu;
+ PermutationPType m_p;
+ PermutationQType m_q;
+ IntColVectorType m_rowsTranspositions;
+ IntRowVectorType m_colsTranspositions;
+ Index m_det_pq, m_nonzero_pivots;
+ RealScalar m_maxpivot, m_prescribedThreshold;
+ bool m_isInitialized, m_usePrescribedThreshold;
+};
+
+template<typename MatrixType>
+FullPivLU<MatrixType>::FullPivLU()
+ : m_isInitialized(false), m_usePrescribedThreshold(false)
+{
+}
+
+template<typename MatrixType>
+FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
+ : m_lu(rows, cols),
+ m_p(rows),
+ m_q(cols),
+ m_rowsTranspositions(rows),
+ m_colsTranspositions(cols),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+{
+}
+
+template<typename MatrixType>
+FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
+ : m_lu(matrix.rows(), matrix.cols()),
+ m_p(matrix.rows()),
+ m_q(matrix.cols()),
+ m_rowsTranspositions(matrix.rows()),
+ m_colsTranspositions(matrix.cols()),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+{
+ compute(matrix);
+}
+
+template<typename MatrixType>
+FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
+{
+ // the permutations are stored as int indices, so just to be sure:
+ eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
+
+ m_isInitialized = true;
+ m_lu = matrix;
+
+ const Index size = matrix.diagonalSize();
+ const Index rows = matrix.rows();
+ const Index cols = matrix.cols();
+
+ // will store the transpositions, before we accumulate them at the end.
+ // can't accumulate on-the-fly because that will be done in reverse order for the rows.
+ m_rowsTranspositions.resize(matrix.rows());
+ m_colsTranspositions.resize(matrix.cols());
+ Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
+
+ m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
+ m_maxpivot = RealScalar(0);
+
+ for(Index k = 0; k < size; ++k)
+ {
+ // First, we need to find the pivot.
+
+ // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
+ Index row_of_biggest_in_corner, col_of_biggest_in_corner;
+ RealScalar biggest_in_corner;
+ biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
+ .cwiseAbs()
+ .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
+ row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
+ col_of_biggest_in_corner += k; // need to add k to them.
+
+ if(biggest_in_corner==RealScalar(0))
+ {
+ // before exiting, make sure to initialize the still uninitialized transpositions
+ // in a sane state without destroying what we already have.
+ m_nonzero_pivots = k;
+ for(Index i = k; i < size; ++i)
+ {
+ m_rowsTranspositions.coeffRef(i) = i;
+ m_colsTranspositions.coeffRef(i) = i;
+ }
+ break;
+ }
+
+ if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
+
+ // Now that we've found the pivot, we need to apply the row/col swaps to
+ // bring it to the location (k,k).
+
+ m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
+ m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
+ if(k != row_of_biggest_in_corner) {
+ m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+ if(k != col_of_biggest_in_corner) {
+ m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+
+ // Now that the pivot is at the right location, we update the remaining
+ // bottom-right corner by Gaussian elimination.
+
+ if(k<rows-1)
+ m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
+ if(k<size-1)
+ m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
+ }
+
+ // the main loop is over, we still have to accumulate the transpositions to find the
+ // permutations P and Q
+
+ m_p.setIdentity(rows);
+ for(Index k = size-1; k >= 0; --k)
+ m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
+
+ m_q.setIdentity(cols);
+ for(Index k = 0; k < size; ++k)
+ m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
+
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
+ return *this;
+}
+
+template<typename MatrixType>
+typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
+{
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
+ return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
+}
+
+/** \returns the matrix represented by the decomposition,
+ * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
+ * This function is provided for debug purposes. */
+template<typename MatrixType>
+MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
+{
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
+ // LU
+ MatrixType res(m_lu.rows(),m_lu.cols());
+ // FIXME the .toDenseMatrix() should not be needed...
+ res = m_lu.leftCols(smalldim)
+ .template triangularView<UnitLower>().toDenseMatrix()
+ * m_lu.topRows(smalldim)
+ .template triangularView<Upper>().toDenseMatrix();
+
+ // P^{-1}(LU)
+ res = m_p.inverse() * res;
+
+ // (P^{-1}LU)Q^{-1}
+ res = res * m_q.inverse();
+
+ return res;
+}
+
+/********* Implementation of kernel() **************************************************/
+
+namespace internal {
+template<typename _MatrixType>
+struct kernel_retval<FullPivLU<_MatrixType> >
+ : kernel_retval_base<FullPivLU<_MatrixType> >
+{
+ EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
+
+ enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
+ MatrixType::MaxColsAtCompileTime,
+ MatrixType::MaxRowsAtCompileTime)
+ };
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ using std::abs;
+ const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
+ if(dimker == 0)
+ {
+ // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
+ // avoid crashing/asserting as that depends on floating point calculations. Let's
+ // just return a single column vector filled with zeros.
+ dst.setZero();
+ return;
+ }
+
+ /* Let us use the following lemma:
+ *
+ * Lemma: If the matrix A has the LU decomposition PAQ = LU,
+ * then Ker A = Q(Ker U).
+ *
+ * Proof: trivial: just keep in mind that P, Q, L are invertible.
+ */
+
+ /* Thus, all we need to do is to compute Ker U, and then apply Q.
+ *
+ * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
+ * Thus, the diagonal of U ends with exactly
+ * dimKer zero's. Let us use that to construct dimKer linearly
+ * independent vectors in Ker U.
+ */
+
+ Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
+ RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
+ Index p = 0;
+ for(Index i = 0; i < dec().nonzeroPivots(); ++i)
+ if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
+ pivots.coeffRef(p++) = i;
+ eigen_internal_assert(p == rank());
+
+ // we construct a temporaty trapezoid matrix m, by taking the U matrix and
+ // permuting the rows and cols to bring the nonnegligible pivots to the top of
+ // the main diagonal. We need that to be able to apply our triangular solvers.
+ // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
+ Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
+ MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
+ m(dec().matrixLU().block(0, 0, rank(), cols));
+ for(Index i = 0; i < rank(); ++i)
+ {
+ if(i) m.row(i).head(i).setZero();
+ m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
+ }
+ m.block(0, 0, rank(), rank());
+ m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
+ for(Index i = 0; i < rank(); ++i)
+ m.col(i).swap(m.col(pivots.coeff(i)));
+
+ // ok, we have our trapezoid matrix, we can apply the triangular solver.
+ // notice that the math behind this suggests that we should apply this to the
+ // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
+ m.topLeftCorner(rank(), rank())
+ .template triangularView<Upper>().solveInPlace(
+ m.topRightCorner(rank(), dimker)
+ );
+
+ // now we must undo the column permutation that we had applied!
+ for(Index i = rank()-1; i >= 0; --i)
+ m.col(i).swap(m.col(pivots.coeff(i)));
+
+ // see the negative sign in the next line, that's what we were talking about above.
+ for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
+ for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
+ for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
+ }
+};
+
+/***** Implementation of image() *****************************************************/
+
+template<typename _MatrixType>
+struct image_retval<FullPivLU<_MatrixType> >
+ : image_retval_base<FullPivLU<_MatrixType> >
+{
+ EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
+
+ enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
+ MatrixType::MaxColsAtCompileTime,
+ MatrixType::MaxRowsAtCompileTime)
+ };
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ using std::abs;
+ if(rank() == 0)
+ {
+ // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
+ // avoid crashing/asserting as that depends on floating point calculations. Let's
+ // just return a single column vector filled with zeros.
+ dst.setZero();
+ return;
+ }
+
+ Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
+ RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
+ Index p = 0;
+ for(Index i = 0; i < dec().nonzeroPivots(); ++i)
+ if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
+ pivots.coeffRef(p++) = i;
+ eigen_internal_assert(p == rank());
+
+ for(Index i = 0; i < rank(); ++i)
+ dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
+ }
+};
+
+/***** Implementation of solve() *****************************************************/
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<FullPivLU<_MatrixType>, Rhs>
+ : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
+{
+ EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
+ * So we proceed as follows:
+ * Step 1: compute c = P * rhs.
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
+ * Step 3: replace c by the solution x to Ux = c. May or may not exist.
+ * Step 4: result = Q * c;
+ */
+
+ const Index rows = dec().rows(), cols = dec().cols(),
+ nonzero_pivots = dec().nonzeroPivots();
+ eigen_assert(rhs().rows() == rows);
+ const Index smalldim = (std::min)(rows, cols);
+
+ if(nonzero_pivots == 0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
+
+ // Step 1
+ c = dec().permutationP() * rhs();
+
+ // Step 2
+ dec().matrixLU()
+ .topLeftCorner(smalldim,smalldim)
+ .template triangularView<UnitLower>()
+ .solveInPlace(c.topRows(smalldim));
+ if(rows>cols)
+ {
+ c.bottomRows(rows-cols)
+ -= dec().matrixLU().bottomRows(rows-cols)
+ * c.topRows(cols);
+ }
+
+ // Step 3
+ dec().matrixLU()
+ .topLeftCorner(nonzero_pivots, nonzero_pivots)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(nonzero_pivots));
+
+ // Step 4
+ for(Index i = 0; i < nonzero_pivots; ++i)
+ dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
+ for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
+ dst.row(dec().permutationQ().indices().coeff(i)).setZero();
+ }
+};
+
+} // end namespace internal
+
+/******* MatrixBase methods *****************************************************************/
+
+/** \lu_module
+ *
+ * \return the full-pivoting LU decomposition of \c *this.
+ *
+ * \sa class FullPivLU
+ */
+#ifndef __CUDACC__
+template<typename Derived>
+inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::fullPivLu() const
+{
+ return FullPivLU<PlainObject>(eval());
+}
+#endif
+
+} // end namespace Eigen
+
+#endif // EIGEN_LU_H