aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h')
-rw-r--r--third_party/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h467
1 files changed, 0 insertions, 467 deletions
diff --git a/third_party/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/third_party/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
deleted file mode 100644
index b55afc1363..0000000000
--- a/third_party/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
+++ /dev/null
@@ -1,467 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_INCOMPLETE_LUT_H
-#define EIGEN_INCOMPLETE_LUT_H
-
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * Compute a quick-sort split of a vector
- * On output, the vector row is permuted such that its elements satisfy
- * abs(row(i)) >= abs(row(ncut)) if i<ncut
- * abs(row(i)) <= abs(row(ncut)) if i>ncut
- * \param row The vector of values
- * \param ind The array of index for the elements in @p row
- * \param ncut The number of largest elements to keep
- **/
-template <typename VectorV, typename VectorI, typename Index>
-Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
-{
- typedef typename VectorV::RealScalar RealScalar;
- using std::swap;
- using std::abs;
- Index mid;
- Index n = row.size(); /* length of the vector */
- Index first, last ;
-
- ncut--; /* to fit the zero-based indices */
- first = 0;
- last = n-1;
- if (ncut < first || ncut > last ) return 0;
-
- do {
- mid = first;
- RealScalar abskey = abs(row(mid));
- for (Index j = first + 1; j <= last; j++) {
- if ( abs(row(j)) > abskey) {
- ++mid;
- swap(row(mid), row(j));
- swap(ind(mid), ind(j));
- }
- }
- /* Interchange for the pivot element */
- swap(row(mid), row(first));
- swap(ind(mid), ind(first));
-
- if (mid > ncut) last = mid - 1;
- else if (mid < ncut ) first = mid + 1;
- } while (mid != ncut );
-
- return 0; /* mid is equal to ncut */
-}
-
-}// end namespace internal
-
-/** \ingroup IterativeLinearSolvers_Module
- * \class IncompleteLUT
- * \brief Incomplete LU factorization with dual-threshold strategy
- *
- * During the numerical factorization, two dropping rules are used :
- * 1) any element whose magnitude is less than some tolerance is dropped.
- * This tolerance is obtained by multiplying the input tolerance @p droptol
- * by the average magnitude of all the original elements in the current row.
- * 2) After the elimination of the row, only the @p fill largest elements in
- * the L part and the @p fill largest elements in the U part are kept
- * (in addition to the diagonal element ). Note that @p fill is computed from
- * the input parameter @p fillfactor which is used the ratio to control the fill_in
- * relatively to the initial number of nonzero elements.
- *
- * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
- * and when @p fill=n/2 with @p droptol being different to zero.
- *
- * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
- * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
- *
- * NOTE : The following implementation is derived from the ILUT implementation
- * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
- * released under the terms of the GNU LGPL:
- * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
- * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
- * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
- * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
- * alternatively, on GMANE:
- * http://comments.gmane.org/gmane.comp.lib.eigen/3302
- */
-template <typename _Scalar>
-class IncompleteLUT : internal::noncopyable
-{
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef SparseMatrix<Scalar,RowMajor> FactorType;
- typedef SparseMatrix<Scalar,ColMajor> PermutType;
- typedef typename FactorType::Index Index;
-
- public:
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
-
- IncompleteLUT()
- : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
- m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
- {}
-
- template<typename MatrixType>
- IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
- : m_droptol(droptol),m_fillfactor(fillfactor),
- m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
- {
- eigen_assert(fillfactor != 0);
- compute(mat);
- }
-
- Index rows() const { return m_lu.rows(); }
-
- Index cols() const { return m_lu.cols(); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
- return m_info;
- }
-
- template<typename MatrixType>
- void analyzePattern(const MatrixType& amat);
-
- template<typename MatrixType>
- void factorize(const MatrixType& amat);
-
- /**
- * Compute an incomplete LU factorization with dual threshold on the matrix mat
- * No pivoting is done in this version
- *
- **/
- template<typename MatrixType>
- IncompleteLUT<Scalar>& compute(const MatrixType& amat)
- {
- analyzePattern(amat);
- factorize(amat);
- m_isInitialized = m_factorizationIsOk;
- return *this;
- }
-
- void setDroptol(const RealScalar& droptol);
- void setFillfactor(int fillfactor);
-
- template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
- {
- x = m_Pinv * b;
- x = m_lu.template triangularView<UnitLower>().solve(x);
- x = m_lu.template triangularView<Upper>().solve(x);
- x = m_P * x;
- }
-
- template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
- eigen_assert(cols()==b.rows()
- && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
- }
-
-protected:
-
- /** keeps off-diagonal entries; drops diagonal entries */
- struct keep_diag {
- inline bool operator() (const Index& row, const Index& col, const Scalar&) const
- {
- return row!=col;
- }
- };
-
-protected:
-
- FactorType m_lu;
- RealScalar m_droptol;
- int m_fillfactor;
- bool m_analysisIsOk;
- bool m_factorizationIsOk;
- bool m_isInitialized;
- ComputationInfo m_info;
- PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
- PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
-};
-
-/**
- * Set control parameter droptol
- * \param droptol Drop any element whose magnitude is less than this tolerance
- **/
-template<typename Scalar>
-void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
-{
- this->m_droptol = droptol;
-}
-
-/**
- * Set control parameter fillfactor
- * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
- **/
-template<typename Scalar>
-void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
-{
- this->m_fillfactor = fillfactor;
-}
-
-template <typename Scalar>
-template<typename _MatrixType>
-void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
-{
- // Compute the Fill-reducing permutation
- SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
- SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
- // Symmetrize the pattern
- // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
- // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
- SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
- AtA.prune(keep_diag());
- internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
-
- m_Pinv = m_P.inverse(); // ... and the inverse permutation
-
- m_analysisIsOk = true;
-}
-
-template <typename Scalar>
-template<typename _MatrixType>
-void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
-{
- using std::sqrt;
- using std::swap;
- using std::abs;
-
- eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
- Index n = amat.cols(); // Size of the matrix
- m_lu.resize(n,n);
- // Declare Working vectors and variables
- Vector u(n) ; // real values of the row -- maximum size is n --
- VectorXi ju(n); // column position of the values in u -- maximum size is n
- VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
-
- // Apply the fill-reducing permutation
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- SparseMatrix<Scalar,RowMajor, Index> mat;
- mat = amat.twistedBy(m_Pinv);
-
- // Initialization
- jr.fill(-1);
- ju.fill(0);
- u.fill(0);
-
- // number of largest elements to keep in each row:
- Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
- if (fill_in > n) fill_in = n;
-
- // number of largest nonzero elements to keep in the L and the U part of the current row:
- Index nnzL = fill_in/2;
- Index nnzU = nnzL;
- m_lu.reserve(n * (nnzL + nnzU + 1));
-
- // global loop over the rows of the sparse matrix
- for (Index ii = 0; ii < n; ii++)
- {
- // 1 - copy the lower and the upper part of the row i of mat in the working vector u
-
- Index sizeu = 1; // number of nonzero elements in the upper part of the current row
- Index sizel = 0; // number of nonzero elements in the lower part of the current row
- ju(ii) = ii;
- u(ii) = 0;
- jr(ii) = ii;
- RealScalar rownorm = 0;
-
- typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
- for (; j_it; ++j_it)
- {
- Index k = j_it.index();
- if (k < ii)
- {
- // copy the lower part
- ju(sizel) = k;
- u(sizel) = j_it.value();
- jr(k) = sizel;
- ++sizel;
- }
- else if (k == ii)
- {
- u(ii) = j_it.value();
- }
- else
- {
- // copy the upper part
- Index jpos = ii + sizeu;
- ju(jpos) = k;
- u(jpos) = j_it.value();
- jr(k) = jpos;
- ++sizeu;
- }
- rownorm += numext::abs2(j_it.value());
- }
-
- // 2 - detect possible zero row
- if(rownorm==0)
- {
- m_info = NumericalIssue;
- return;
- }
- // Take the 2-norm of the current row as a relative tolerance
- rownorm = sqrt(rownorm);
-
- // 3 - eliminate the previous nonzero rows
- Index jj = 0;
- Index len = 0;
- while (jj < sizel)
- {
- // In order to eliminate in the correct order,
- // we must select first the smallest column index among ju(jj:sizel)
- Index k;
- Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
- k += jj;
- if (minrow != ju(jj))
- {
- // swap the two locations
- Index j = ju(jj);
- swap(ju(jj), ju(k));
- jr(minrow) = jj; jr(j) = k;
- swap(u(jj), u(k));
- }
- // Reset this location
- jr(minrow) = -1;
-
- // Start elimination
- typename FactorType::InnerIterator ki_it(m_lu, minrow);
- while (ki_it && ki_it.index() < minrow) ++ki_it;
- eigen_internal_assert(ki_it && ki_it.col()==minrow);
- Scalar fact = u(jj) / ki_it.value();
-
- // drop too small elements
- if(abs(fact) <= m_droptol)
- {
- jj++;
- continue;
- }
-
- // linear combination of the current row ii and the row minrow
- ++ki_it;
- for (; ki_it; ++ki_it)
- {
- Scalar prod = fact * ki_it.value();
- Index j = ki_it.index();
- Index jpos = jr(j);
- if (jpos == -1) // fill-in element
- {
- Index newpos;
- if (j >= ii) // dealing with the upper part
- {
- newpos = ii + sizeu;
- sizeu++;
- eigen_internal_assert(sizeu<=n);
- }
- else // dealing with the lower part
- {
- newpos = sizel;
- sizel++;
- eigen_internal_assert(sizel<=ii);
- }
- ju(newpos) = j;
- u(newpos) = -prod;
- jr(j) = newpos;
- }
- else
- u(jpos) -= prod;
- }
- // store the pivot element
- u(len) = fact;
- ju(len) = minrow;
- ++len;
-
- jj++;
- } // end of the elimination on the row ii
-
- // reset the upper part of the pointer jr to zero
- for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
-
- // 4 - partially sort and insert the elements in the m_lu matrix
-
- // sort the L-part of the row
- sizel = len;
- len = (std::min)(sizel, nnzL);
- typename Vector::SegmentReturnType ul(u.segment(0, sizel));
- typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
- internal::QuickSplit(ul, jul, len);
-
- // store the largest m_fill elements of the L part
- m_lu.startVec(ii);
- for(Index k = 0; k < len; k++)
- m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
-
- // store the diagonal element
- // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
- if (u(ii) == Scalar(0))
- u(ii) = sqrt(m_droptol) * rownorm;
- m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
-
- // sort the U-part of the row
- // apply the dropping rule first
- len = 0;
- for(Index k = 1; k < sizeu; k++)
- {
- if(abs(u(ii+k)) > m_droptol * rownorm )
- {
- ++len;
- u(ii + len) = u(ii + k);
- ju(ii + len) = ju(ii + k);
- }
- }
- sizeu = len + 1; // +1 to take into account the diagonal element
- len = (std::min)(sizeu, nnzU);
- typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
- typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
- internal::QuickSplit(uu, juu, len);
-
- // store the largest elements of the U part
- for(Index k = ii + 1; k < ii + len; k++)
- m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
- }
-
- m_lu.finalize();
- m_lu.makeCompressed();
-
- m_factorizationIsOk = true;
- m_info = Success;
-}
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
- : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
-{
- typedef IncompleteLUT<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_INCOMPLETE_LUT_H