aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Geometry/Umeyama.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/Geometry/Umeyama.h')
-rw-r--r--third_party/eigen3/Eigen/src/Geometry/Umeyama.h177
1 files changed, 177 insertions, 0 deletions
diff --git a/third_party/eigen3/Eigen/src/Geometry/Umeyama.h b/third_party/eigen3/Eigen/src/Geometry/Umeyama.h
new file mode 100644
index 0000000000..5e20662f80
--- /dev/null
+++ b/third_party/eigen3/Eigen/src/Geometry/Umeyama.h
@@ -0,0 +1,177 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_UMEYAMA_H
+#define EIGEN_UMEYAMA_H
+
+// This file requires the user to include
+// * Eigen/Core
+// * Eigen/LU
+// * Eigen/SVD
+// * Eigen/Array
+
+namespace Eigen {
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+// These helpers are required since it allows to use mixed types as parameters
+// for the Umeyama. The problem with mixed parameters is that the return type
+// cannot trivially be deduced when float and double types are mixed.
+namespace internal {
+
+// Compile time return type deduction for different MatrixBase types.
+// Different means here different alignment and parameters but the same underlying
+// real scalar type.
+template<typename MatrixType, typename OtherMatrixType>
+struct umeyama_transform_matrix_type
+{
+ enum {
+ MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
+
+ // When possible we want to choose some small fixed size value since the result
+ // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
+ HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1
+ };
+
+ typedef Matrix<typename traits<MatrixType>::Scalar,
+ HomogeneousDimension,
+ HomogeneousDimension,
+ AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
+ HomogeneousDimension,
+ HomogeneousDimension
+ > type;
+};
+
+}
+
+#endif
+
+/**
+* \geometry_module \ingroup Geometry_Module
+*
+* \brief Returns the transformation between two point sets.
+*
+* The algorithm is based on:
+* "Least-squares estimation of transformation parameters between two point patterns",
+* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
+*
+* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
+* \f{align*}
+* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
+* \f}
+* is minimized.
+*
+* The algorithm is based on the analysis of the covariance matrix
+* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
+* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where
+* \f$d\f$ is corresponding to the dimension (which is typically small).
+* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
+* though the actual computational effort lies in the covariance
+* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when
+* the input point sets have dimension \f$d \times m\f$.
+*
+* Currently the method is working only for floating point matrices.
+*
+* \todo Should the return type of umeyama() become a Transform?
+*
+* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
+* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
+* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
+* \return The homogeneous transformation
+* \f{align*}
+* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
+* \f}
+* minimizing the resudiual above. This transformation is always returned as an
+* Eigen::Matrix.
+*/
+template <typename Derived, typename OtherDerived>
+typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
+umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
+{
+ typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
+ typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename Derived::Index Index;
+
+ EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+ enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
+
+ typedef Matrix<Scalar, Dimension, 1> VectorType;
+ typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
+ typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
+
+ const Index m = src.rows(); // dimension
+ const Index n = src.cols(); // number of measurements
+
+ // required for demeaning ...
+ const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
+
+ // computation of mean
+ const VectorType src_mean = src.rowwise().sum() * one_over_n;
+ const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
+
+ // demeaning of src and dst points
+ const RowMajorMatrixType src_demean = src.colwise() - src_mean;
+ const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
+
+ // Eq. (36)-(37)
+ const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
+
+ // Eq. (38)
+ const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
+
+ JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);
+
+ // Initialize the resulting transformation with an identity matrix...
+ TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
+
+ // Eq. (39)
+ VectorType S = VectorType::Ones(m);
+ if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1);
+
+ // Eq. (40) and (43)
+ const VectorType& d = svd.singularValues();
+ Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
+ if (rank == m-1) {
+ if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) {
+ Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
+ } else {
+ const Scalar s = S(m-1); S(m-1) = Scalar(-1);
+ Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
+ S(m-1) = s;
+ }
+ } else {
+ Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
+ }
+
+ if (with_scaling)
+ {
+ // Eq. (42)
+ const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
+
+ // Eq. (41)
+ Rt.col(m).head(m) = dst_mean;
+ Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
+ Rt.block(0,0,m,m) *= c;
+ }
+ else
+ {
+ Rt.col(m).head(m) = dst_mean;
+ Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean;
+ }
+
+ return Rt;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_UMEYAMA_H