aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Eigenvalues/Tridiagonalization.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/Eigenvalues/Tridiagonalization.h')
-rw-r--r--third_party/eigen3/Eigen/src/Eigenvalues/Tridiagonalization.h557
1 files changed, 0 insertions, 557 deletions
diff --git a/third_party/eigen3/Eigen/src/Eigenvalues/Tridiagonalization.h b/third_party/eigen3/Eigen/src/Eigenvalues/Tridiagonalization.h
deleted file mode 100644
index 192278d685..0000000000
--- a/third_party/eigen3/Eigen/src/Eigenvalues/Tridiagonalization.h
+++ /dev/null
@@ -1,557 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIDIAGONALIZATION_H
-#define EIGEN_TRIDIAGONALIZATION_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
-template<typename MatrixType>
-struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename MatrixType, typename CoeffVectorType>
-void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
-}
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class Tridiagonalization
- *
- * \brief Tridiagonal decomposition of a selfadjoint matrix
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the
- * tridiagonal decomposition; this is expected to be an instantiation of the
- * Matrix class template.
- *
- * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
- * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
- *
- * A tridiagonal matrix is a matrix which has nonzero elements only on the
- * main diagonal and the first diagonal below and above it. The Hessenberg
- * decomposition of a selfadjoint matrix is in fact a tridiagonal
- * decomposition. This class is used in SelfAdjointEigenSolver to compute the
- * eigenvalues and eigenvectors of a selfadjoint matrix.
- *
- * Call the function compute() to compute the tridiagonal decomposition of a
- * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
- * constructor which computes the tridiagonal Schur decomposition at
- * construction time. Once the decomposition is computed, you can use the
- * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
- * decomposition.
- *
- * The documentation of Tridiagonalization(const MatrixType&) contains an
- * example of the typical use of this class.
- *
- * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
- */
-template<typename _MatrixType> class Tridiagonalization
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- enum {
- Size = MatrixType::RowsAtCompileTime,
- SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
- Options = MatrixType::Options,
- MaxSize = MatrixType::MaxRowsAtCompileTime,
- MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
- };
-
- typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
- typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
- typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
- typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
-
- typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
- const Diagonal<const MatrixType>
- >::type DiagonalReturnType;
-
- typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- typename internal::add_const_on_value_type<typename Diagonal<
- Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type,
- const Diagonal<
- Block<const MatrixType,SizeMinusOne,SizeMinusOne> >
- >::type SubDiagonalReturnType;
-
- /** \brief Return type of matrixQ() */
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- /** \brief Default constructor.
- *
- * \param [in] size Positive integer, size of the matrix whose tridiagonal
- * decomposition will be computed.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute(). The \p size parameter is only
- * used as a hint. It is not an error to give a wrong \p size, but it may
- * impair performance.
- *
- * \sa compute() for an example.
- */
- Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
- : m_matrix(size,size),
- m_hCoeffs(size > 1 ? size-1 : 1),
- m_isInitialized(false)
- {}
-
- /** \brief Constructor; computes tridiagonal decomposition of given matrix.
- *
- * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
- * is to be computed.
- *
- * This constructor calls compute() to compute the tridiagonal decomposition.
- *
- * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
- * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
- */
- Tridiagonalization(const MatrixType& matrix)
- : m_matrix(matrix),
- m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
- m_isInitialized(false)
- {
- internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
- m_isInitialized = true;
- }
-
- /** \brief Computes tridiagonal decomposition of given matrix.
- *
- * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
- * is to be computed.
- * \returns Reference to \c *this
- *
- * The tridiagonal decomposition is computed by bringing the columns of
- * the matrix successively in the required form using Householder
- * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
- * the size of the given matrix.
- *
- * This method reuses of the allocated data in the Tridiagonalization
- * object, if the size of the matrix does not change.
- *
- * Example: \include Tridiagonalization_compute.cpp
- * Output: \verbinclude Tridiagonalization_compute.out
- */
- Tridiagonalization& compute(const MatrixType& matrix)
- {
- m_matrix = matrix;
- m_hCoeffs.resize(matrix.rows()-1, 1);
- internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
- m_isInitialized = true;
- return *this;
- }
-
- /** \brief Returns the Householder coefficients.
- *
- * \returns a const reference to the vector of Householder coefficients
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * The Householder coefficients allow the reconstruction of the matrix
- * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
- *
- * Example: \include Tridiagonalization_householderCoefficients.cpp
- * Output: \verbinclude Tridiagonalization_householderCoefficients.out
- *
- * \sa packedMatrix(), \ref Householder_Module "Householder module"
- */
- inline CoeffVectorType householderCoefficients() const
- {
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return m_hCoeffs;
- }
-
- /** \brief Returns the internal representation of the decomposition
- *
- * \returns a const reference to a matrix with the internal representation
- * of the decomposition.
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * The returned matrix contains the following information:
- * - the strict upper triangular part is equal to the input matrix A.
- * - the diagonal and lower sub-diagonal represent the real tridiagonal
- * symmetric matrix T.
- * - the rest of the lower part contains the Householder vectors that,
- * combined with Householder coefficients returned by
- * householderCoefficients(), allows to reconstruct the matrix Q as
- * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
- * Here, the matrices \f$ H_i \f$ are the Householder transformations
- * \f$ H_i = (I - h_i v_i v_i^T) \f$
- * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
- * \f$ v_i \f$ is the Householder vector defined by
- * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
- * with M the matrix returned by this function.
- *
- * See LAPACK for further details on this packed storage.
- *
- * Example: \include Tridiagonalization_packedMatrix.cpp
- * Output: \verbinclude Tridiagonalization_packedMatrix.out
- *
- * \sa householderCoefficients()
- */
- inline const MatrixType& packedMatrix() const
- {
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return m_matrix;
- }
-
- /** \brief Returns the unitary matrix Q in the decomposition
- *
- * \returns object representing the matrix Q
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * This function returns a light-weight object of template class
- * HouseholderSequence. You can either apply it directly to a matrix or
- * you can convert it to a matrix of type #MatrixType.
- *
- * \sa Tridiagonalization(const MatrixType&) for an example,
- * matrixT(), class HouseholderSequence
- */
- HouseholderSequenceType matrixQ() const
- {
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
- .setLength(m_matrix.rows() - 1)
- .setShift(1);
- }
-
- /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
- *
- * \returns expression object representing the matrix T
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * Currently, this function can be used to extract the matrix T from internal
- * data and copy it to a dense matrix object. In most cases, it may be
- * sufficient to directly use the packed matrix or the vector expressions
- * returned by diagonal() and subDiagonal() instead of creating a new
- * dense copy matrix with this function.
- *
- * \sa Tridiagonalization(const MatrixType&) for an example,
- * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
- */
- MatrixTReturnType matrixT() const
- {
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return MatrixTReturnType(m_matrix.real());
- }
-
- /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
- *
- * \returns expression representing the diagonal of T
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * Example: \include Tridiagonalization_diagonal.cpp
- * Output: \verbinclude Tridiagonalization_diagonal.out
- *
- * \sa matrixT(), subDiagonal()
- */
- DiagonalReturnType diagonal() const;
-
- /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
- *
- * \returns expression representing the subdiagonal of T
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * \sa diagonal() for an example, matrixT()
- */
- SubDiagonalReturnType subDiagonal() const;
-
- protected:
-
- MatrixType m_matrix;
- CoeffVectorType m_hCoeffs;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-typename Tridiagonalization<MatrixType>::DiagonalReturnType
-Tridiagonalization<MatrixType>::diagonal() const
-{
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return m_matrix.diagonal();
-}
-
-template<typename MatrixType>
-typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
-Tridiagonalization<MatrixType>::subDiagonal() const
-{
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- Index n = m_matrix.rows();
- return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
-}
-
-namespace internal {
-
-/** \internal
- * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
- *
- * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
- * On output, the strict upper part is left unchanged, and the lower triangular part
- * represents the T and Q matrices in packed format has detailed below.
- * \param[out] hCoeffs returned Householder coefficients (see below)
- *
- * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
- * and lower sub-diagonal of the matrix \a matA.
- * The unitary matrix Q is represented in a compact way as a product of
- * Householder reflectors \f$ H_i \f$ such that:
- * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
- * The Householder reflectors are defined as
- * \f$ H_i = (I - h_i v_i v_i^T) \f$
- * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
- * \f$ v_i \f$ is the Householder vector defined by
- * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
- *
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
- *
- * \sa Tridiagonalization::packedMatrix()
- */
-template<typename MatrixType, typename CoeffVectorType>
-void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
-{
- using numext::conj;
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- Index n = matA.rows();
- eigen_assert(n==matA.cols());
- eigen_assert(n==hCoeffs.size()+1 || n==1);
-
- for (Index i = 0; i<n-1; ++i)
- {
- Index remainingSize = n-i-1;
- RealScalar beta;
- Scalar h;
- matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
-
- // Apply similarity transformation to remaining columns,
- // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
- matA.col(i).coeffRef(i+1) = 1;
-
- hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
- * (conj(h) * matA.col(i).tail(remainingSize)));
-
- hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
-
- matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
- .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1);
-
- matA.col(i).coeffRef(i+1) = beta;
- hCoeffs.coeffRef(i) = h;
- }
-}
-
-// forward declaration, implementation at the end of this file
-template<typename MatrixType,
- int Size=MatrixType::ColsAtCompileTime,
- bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
-struct tridiagonalization_inplace_selector;
-
-/** \brief Performs a full tridiagonalization in place
- *
- * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
- * decomposition is to be computed. Only the lower triangular part referenced.
- * The rest is left unchanged. On output, the orthogonal matrix Q
- * in the decomposition if \p extractQ is true.
- * \param[out] diag The diagonal of the tridiagonal matrix T in the
- * decomposition.
- * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
- * the decomposition.
- * \param[in] extractQ If true, the orthogonal matrix Q in the
- * decomposition is computed and stored in \p mat.
- *
- * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
- * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
- * symmetric tridiagonal matrix.
- *
- * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
- * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
- * part of the matrix \p mat is destroyed.
- *
- * The vectors \p diag and \p subdiag are not resized. The function
- * assumes that they are already of the correct size. The length of the
- * vector \p diag should equal the number of rows in \p mat, and the
- * length of the vector \p subdiag should be one left.
- *
- * This implementation contains an optimized path for 3-by-3 matrices
- * which is especially useful for plane fitting.
- *
- * \note Currently, it requires two temporary vectors to hold the intermediate
- * Householder coefficients, and to reconstruct the matrix Q from the Householder
- * reflectors.
- *
- * Example (this uses the same matrix as the example in
- * Tridiagonalization::Tridiagonalization(const MatrixType&)):
- * \include Tridiagonalization_decomposeInPlace.cpp
- * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
- *
- * \sa class Tridiagonalization
- */
-template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
-void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
-{
- eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
- tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
-}
-
-/** \internal
- * General full tridiagonalization
- */
-template<typename MatrixType, int Size, bool IsComplex>
-struct tridiagonalization_inplace_selector
-{
- typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
- typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
- typedef typename MatrixType::Index Index;
- template<typename DiagonalType, typename SubDiagonalType>
- static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
- {
- CoeffVectorType hCoeffs(mat.cols()-1);
- tridiagonalization_inplace(mat,hCoeffs);
- diag = mat.diagonal().real();
- subdiag = mat.template diagonal<-1>().real();
- if(extractQ)
- mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
- .setLength(mat.rows() - 1)
- .setShift(1);
- }
-};
-
-/** \internal
- * Specialization for 3x3 real matrices.
- * Especially useful for plane fitting.
- */
-template<typename MatrixType>
-struct tridiagonalization_inplace_selector<MatrixType,3,false>
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
-
- template<typename DiagonalType, typename SubDiagonalType>
- static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
- {
- using std::sqrt;
- diag[0] = mat(0,0);
- RealScalar v1norm2 = numext::abs2(mat(2,0));
- if(v1norm2 == RealScalar(0))
- {
- diag[1] = mat(1,1);
- diag[2] = mat(2,2);
- subdiag[0] = mat(1,0);
- subdiag[1] = mat(2,1);
- if (extractQ)
- mat.setIdentity();
- }
- else
- {
- RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
- RealScalar invBeta = RealScalar(1)/beta;
- Scalar m01 = mat(1,0) * invBeta;
- Scalar m02 = mat(2,0) * invBeta;
- Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
- diag[1] = mat(1,1) + m02*q;
- diag[2] = mat(2,2) - m02*q;
- subdiag[0] = beta;
- subdiag[1] = mat(2,1) - m01 * q;
- if (extractQ)
- {
- mat << 1, 0, 0,
- 0, m01, m02,
- 0, m02, -m01;
- }
- }
- }
-};
-
-/** \internal
- * Trivial specialization for 1x1 matrices
- */
-template<typename MatrixType, bool IsComplex>
-struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
-{
- typedef typename MatrixType::Scalar Scalar;
-
- template<typename DiagonalType, typename SubDiagonalType>
- static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
- {
- diag(0,0) = numext::real(mat(0,0));
- if(extractQ)
- mat(0,0) = Scalar(1);
- }
-};
-
-/** \internal
- * \eigenvalues_module \ingroup Eigenvalues_Module
- *
- * \brief Expression type for return value of Tridiagonalization::matrixT()
- *
- * \tparam MatrixType type of underlying dense matrix
- */
-template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
-: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
-{
- typedef typename MatrixType::Index Index;
- public:
- /** \brief Constructor.
- *
- * \param[in] mat The underlying dense matrix
- */
- TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
-
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- result.setZero();
- result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
- result.diagonal() = m_matrix.diagonal();
- result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
- }
-
- Index rows() const { return m_matrix.rows(); }
- Index cols() const { return m_matrix.cols(); }
-
- protected:
- typename MatrixType::Nested m_matrix;
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIDIAGONALIZATION_H