aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h')
-rw-r--r--third_party/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h341
1 files changed, 0 insertions, 341 deletions
diff --git a/third_party/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/third_party/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
deleted file mode 100644
index dc240e13e1..0000000000
--- a/third_party/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
+++ /dev/null
@@ -1,341 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
-#define EIGEN_GENERALIZEDEIGENSOLVER_H
-
-#include "./RealQZ.h"
-
-namespace Eigen {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class GeneralizedEigenSolver
- *
- * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
- *
- * \tparam _MatrixType the type of the matrices of which we are computing the
- * eigen-decomposition; this is expected to be an instantiation of the Matrix
- * class template. Currently, only real matrices are supported.
- *
- * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
- * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
- * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
- * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
- * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
- * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
- *
- * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
- * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
- * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
- * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
- * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
- * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
- * called the left eigenvector.
- *
- * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
- * a given matrix pair. Alternatively, you can use the
- * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
- * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
- * eigenvectors are computed, they can be retrieved with the eigenvalues() and
- * eigenvectors() functions.
- *
- * Here is an usage example of this class:
- * Example: \include GeneralizedEigenSolver.cpp
- * Output: \verbinclude GeneralizedEigenSolver.out
- *
- * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
- */
-template<typename _MatrixType> class GeneralizedEigenSolver
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- /** \brief Scalar type for matrices of type #MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Complex scalar type for #MatrixType.
- *
- * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
- * \c float or \c double) and just \c Scalar if #Scalar is
- * complex.
- */
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
- *
- * This is a column vector with entries of type #Scalar.
- * The length of the vector is the size of #MatrixType.
- */
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
-
- /** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
- *
- * This is a column vector with entries of type #ComplexScalar.
- * The length of the vector is the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
-
- /** \brief Expression type for the eigenvalues as returned by eigenvalues().
- */
- typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
-
- /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
- *
- * This is a square matrix with entries of type #ComplexScalar.
- * The size is the same as the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
-
- /** \brief Default constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
- *
- * \sa compute() for an example.
- */
- GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
-
- /** \brief Default constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa GeneralizedEigenSolver()
- */
- GeneralizedEigenSolver(Index size)
- : m_eivec(size, size),
- m_alphas(size),
- m_betas(size),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_realQZ(size),
- m_matS(size, size),
- m_tmp(size)
- {}
-
- /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
- *
- * \param[in] A Square matrix whose eigendecomposition is to be computed.
- * \param[in] B Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are computed.
- *
- * This constructor calls compute() to compute the generalized eigenvalues
- * and eigenvectors.
- *
- * \sa compute()
- */
- GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
- : m_eivec(A.rows(), A.cols()),
- m_alphas(A.cols()),
- m_betas(A.cols()),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_realQZ(A.cols()),
- m_matS(A.rows(), A.cols()),
- m_tmp(A.cols())
- {
- compute(A, B, computeEigenvectors);
- }
-
- /* \brief Returns the computed generalized eigenvectors.
- *
- * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
- *
- * \pre Either the constructor
- * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
- * compute(const MatrixType&, const MatrixType& bool) has been called before, and
- * \p computeEigenvectors was set to true (the default).
- *
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
- * eigenvectors are normalized to have (Euclidean) norm equal to one. The
- * matrix returned by this function is the matrix \f$ V \f$ in the
- * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
- *
- * \sa eigenvalues()
- */
-// EigenvectorsType eigenvectors() const;
-
- /** \brief Returns an expression of the computed generalized eigenvalues.
- *
- * \returns An expression of the column vector containing the eigenvalues.
- *
- * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
- * Not that betas might contain zeros. It is therefore not recommended to use this function,
- * but rather directly deal with the alphas and betas vectors.
- *
- * \pre Either the constructor
- * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
- * compute(const MatrixType&,const MatrixType&,bool) has been called before.
- *
- * The eigenvalues are repeated according to their algebraic multiplicity,
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
- * are not sorted in any particular order.
- *
- * \sa alphas(), betas(), eigenvectors()
- */
- EigenvalueType eigenvalues() const
- {
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
- return EigenvalueType(m_alphas,m_betas);
- }
-
- /** \returns A const reference to the vectors containing the alpha values
- *
- * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
- *
- * \sa betas(), eigenvalues() */
- ComplexVectorType alphas() const
- {
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
- return m_alphas;
- }
-
- /** \returns A const reference to the vectors containing the beta values
- *
- * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
- *
- * \sa alphas(), eigenvalues() */
- VectorType betas() const
- {
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
- return m_betas;
- }
-
- /** \brief Computes generalized eigendecomposition of given matrix.
- *
- * \param[in] A Square matrix whose eigendecomposition is to be computed.
- * \param[in] B Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of the real matrix \p matrix.
- * The eigenvalues() function can be used to retrieve them. If
- * \p computeEigenvectors is true, then the eigenvectors are also computed
- * and can be retrieved by calling eigenvectors().
- *
- * The matrix is first reduced to real generalized Schur form using the RealQZ
- * class. The generalized Schur decomposition is then used to compute the eigenvalues
- * and eigenvectors.
- *
- * The cost of the computation is dominated by the cost of the
- * generalized Schur decomposition.
- *
- * This method reuses of the allocated data in the GeneralizedEigenSolver object.
- */
- GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
-
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- return m_realQZ.info();
- }
-
- /** Sets the maximal number of iterations allowed.
- */
- GeneralizedEigenSolver& setMaxIterations(Index maxIters)
- {
- m_realQZ.setMaxIterations(maxIters);
- return *this;
- }
-
- protected:
- MatrixType m_eivec;
- ComplexVectorType m_alphas;
- VectorType m_betas;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
- RealQZ<MatrixType> m_realQZ;
- MatrixType m_matS;
-
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
- ColumnVectorType m_tmp;
-};
-
-//template<typename MatrixType>
-//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
-//{
-// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
-// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
-// Index n = m_eivec.cols();
-// EigenvectorsType matV(n,n);
-// // TODO
-// return matV;
-//}
-
-template<typename MatrixType>
-GeneralizedEigenSolver<MatrixType>&
-GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
-{
- using std::sqrt;
- using std::abs;
- eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
-
- // Reduce to generalized real Schur form:
- // A = Q S Z and B = Q T Z
- m_realQZ.compute(A, B, computeEigenvectors);
-
- if (m_realQZ.info() == Success)
- {
- m_matS = m_realQZ.matrixS();
- if (computeEigenvectors)
- m_eivec = m_realQZ.matrixZ().transpose();
-
- // Compute eigenvalues from matS
- m_alphas.resize(A.cols());
- m_betas.resize(A.cols());
- Index i = 0;
- while (i < A.cols())
- {
- if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
- {
- m_alphas.coeffRef(i) = m_matS.coeff(i, i);
- m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
- ++i;
- }
- else
- {
- Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
- Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
- m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
- m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
-
- m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
- m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
- i += 2;
- }
- }
- }
-
- m_isInitialized = true;
- m_eigenvectorsOk = false;//computeEigenvectors;
-
- return *this;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERALIZEDEIGENSOLVER_H