aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Eigenvalues/ComplexEigenSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/Eigenvalues/ComplexEigenSolver.h')
-rw-r--r--third_party/eigen3/Eigen/src/Eigenvalues/ComplexEigenSolver.h333
1 files changed, 0 insertions, 333 deletions
diff --git a/third_party/eigen3/Eigen/src/Eigenvalues/ComplexEigenSolver.h b/third_party/eigen3/Eigen/src/Eigenvalues/ComplexEigenSolver.h
deleted file mode 100644
index af434bc9bd..0000000000
--- a/third_party/eigen3/Eigen/src/Eigenvalues/ComplexEigenSolver.h
+++ /dev/null
@@ -1,333 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Claire Maurice
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
-#define EIGEN_COMPLEX_EIGEN_SOLVER_H
-
-#include "./ComplexSchur.h"
-
-namespace Eigen {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class ComplexEigenSolver
- *
- * \brief Computes eigenvalues and eigenvectors of general complex matrices
- *
- * \tparam _MatrixType the type of the matrix of which we are
- * computing the eigendecomposition; this is expected to be an
- * instantiation of the Matrix class template.
- *
- * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
- * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
- * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on
- * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
- * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
- * almost always invertible, in which case we have \f$ A = V D V^{-1}
- * \f$. This is called the eigendecomposition.
- *
- * The main function in this class is compute(), which computes the
- * eigenvalues and eigenvectors of a given function. The
- * documentation for that function contains an example showing the
- * main features of the class.
- *
- * \sa class EigenSolver, class SelfAdjointEigenSolver
- */
-template<typename _MatrixType> class ComplexEigenSolver
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- /** \brief Scalar type for matrices of type #MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Complex scalar type for #MatrixType.
- *
- * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
- * \c float or \c double) and just \c Scalar if #Scalar is
- * complex.
- */
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
- *
- * This is a column vector with entries of type #ComplexScalar.
- * The length of the vector is the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
-
- /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
- *
- * This is a square matrix with entries of type #ComplexScalar.
- * The size is the same as the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
-
- /** \brief Default constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute().
- */
- ComplexEigenSolver()
- : m_eivec(),
- m_eivalues(),
- m_schur(),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_matX()
- {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa ComplexEigenSolver()
- */
- ComplexEigenSolver(Index size)
- : m_eivec(size, size),
- m_eivalues(size),
- m_schur(size),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_matX(size, size)
- {}
-
- /** \brief Constructor; computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- *
- * This constructor calls compute() to compute the eigendecomposition.
- */
- ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
- : m_eivec(matrix.rows(),matrix.cols()),
- m_eivalues(matrix.cols()),
- m_schur(matrix.rows()),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_matX(matrix.rows(),matrix.cols())
- {
- compute(matrix, computeEigenvectors);
- }
-
- /** \brief Returns the eigenvectors of given matrix.
- *
- * \returns A const reference to the matrix whose columns are the eigenvectors.
- *
- * \pre Either the constructor
- * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
- * function compute(const MatrixType& matrix, bool) has been called before
- * to compute the eigendecomposition of a matrix, and
- * \p computeEigenvectors was set to true (the default).
- *
- * This function returns a matrix whose columns are the eigenvectors. Column
- * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
- * \f$ as returned by eigenvalues(). The eigenvectors are normalized to
- * have (Euclidean) norm equal to one. The matrix returned by this
- * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
- * V^{-1} \f$, if it exists.
- *
- * Example: \include ComplexEigenSolver_eigenvectors.cpp
- * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
- */
- const EigenvectorType& eigenvectors() const
- {
- eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec;
- }
-
- /** \brief Returns the eigenvalues of given matrix.
- *
- * \returns A const reference to the column vector containing the eigenvalues.
- *
- * \pre Either the constructor
- * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
- * function compute(const MatrixType& matrix, bool) has been called before
- * to compute the eigendecomposition of a matrix.
- *
- * This function returns a column vector containing the
- * eigenvalues. Eigenvalues are repeated according to their
- * algebraic multiplicity, so there are as many eigenvalues as
- * rows in the matrix. The eigenvalues are not sorted in any particular
- * order.
- *
- * Example: \include ComplexEigenSolver_eigenvalues.cpp
- * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
- */
- const EigenvalueType& eigenvalues() const
- {
- eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
- return m_eivalues;
- }
-
- /** \brief Computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of the complex matrix \p matrix.
- * The eigenvalues() function can be used to retrieve them. If
- * \p computeEigenvectors is true, then the eigenvectors are also computed
- * and can be retrieved by calling eigenvectors().
- *
- * The matrix is first reduced to Schur form using the
- * ComplexSchur class. The Schur decomposition is then used to
- * compute the eigenvalues and eigenvectors.
- *
- * The cost of the computation is dominated by the cost of the
- * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
- * is the size of the matrix.
- *
- * Example: \include ComplexEigenSolver_compute.cpp
- * Output: \verbinclude ComplexEigenSolver_compute.out
- */
- ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
- return m_schur.info();
- }
-
- /** \brief Sets the maximum number of iterations allowed. */
- ComplexEigenSolver& setMaxIterations(Index maxIters)
- {
- m_schur.setMaxIterations(maxIters);
- return *this;
- }
-
- /** \brief Returns the maximum number of iterations. */
- Index getMaxIterations()
- {
- return m_schur.getMaxIterations();
- }
-
- protected:
- EigenvectorType m_eivec;
- EigenvalueType m_eivalues;
- ComplexSchur<MatrixType> m_schur;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
- EigenvectorType m_matX;
-
- private:
- void doComputeEigenvectors(const RealScalar& matrixnorm);
- void sortEigenvalues(bool computeEigenvectors);
-};
-
-
-template<typename MatrixType>
-ComplexEigenSolver<MatrixType>&
-ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
-{
- // this code is inspired from Jampack
- eigen_assert(matrix.cols() == matrix.rows());
-
- // Do a complex Schur decomposition, A = U T U^*
- // The eigenvalues are on the diagonal of T.
- m_schur.compute(matrix, computeEigenvectors);
-
- if(m_schur.info() == Success)
- {
- m_eivalues = m_schur.matrixT().diagonal();
- if(computeEigenvectors)
- doComputeEigenvectors(matrix.norm());
- sortEigenvalues(computeEigenvectors);
- }
-
- m_isInitialized = true;
- m_eigenvectorsOk = computeEigenvectors;
- return *this;
-}
-
-
-template<typename MatrixType>
-void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm)
-{
- const Index n = m_eivalues.size();
-
- // Compute X such that T = X D X^(-1), where D is the diagonal of T.
- // The matrix X is unit triangular.
- m_matX = EigenvectorType::Zero(n, n);
- for(Index k=n-1 ; k>=0 ; k--)
- {
- m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
- // Compute X(i,k) using the (i,k) entry of the equation X T = D X
- for(Index i=k-1 ; i>=0 ; i--)
- {
- m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
- if(k-i-1>0)
- m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
- ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
- if(z==ComplexScalar(0))
- {
- // If the i-th and k-th eigenvalue are equal, then z equals 0.
- // Use a small value instead, to prevent division by zero.
- numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
- }
- m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
- }
- }
-
- // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
- m_eivec.noalias() = m_schur.matrixU() * m_matX;
- // .. and normalize the eigenvectors
- for(Index k=0 ; k<n ; k++)
- {
- m_eivec.col(k).normalize();
- }
-}
-
-
-template<typename MatrixType>
-void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
-{
- const Index n = m_eivalues.size();
- for (Index i=0; i<n; i++)
- {
- Index k;
- m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
- if (k != 0)
- {
- k += i;
- std::swap(m_eivalues[k],m_eivalues[i]);
- if(computeEigenvectors)
- m_eivec.col(i).swap(m_eivec.col(k));
- }
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H