aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Core/util/XprHelper.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/Core/util/XprHelper.h')
-rw-r--r--third_party/eigen3/Eigen/src/Core/util/XprHelper.h481
1 files changed, 0 insertions, 481 deletions
diff --git a/third_party/eigen3/Eigen/src/Core/util/XprHelper.h b/third_party/eigen3/Eigen/src/Core/util/XprHelper.h
deleted file mode 100644
index 13285909b4..0000000000
--- a/third_party/eigen3/Eigen/src/Core/util/XprHelper.h
+++ /dev/null
@@ -1,481 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_XPRHELPER_H
-#define EIGEN_XPRHELPER_H
-
-// just a workaround because GCC seems to not really like empty structs
-// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
-// so currently we simply disable this optimization for gcc 4.3
-#if EIGEN_COMP_GNUC && !EIGEN_GNUC_AT(4,3)
- #define EIGEN_EMPTY_STRUCT_CTOR(X) \
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X() {} \
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X(const X& ) {}
-#else
- #define EIGEN_EMPTY_STRUCT_CTOR(X)
-#endif
-
-namespace Eigen {
-
-typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
-
-namespace internal {
-
-//classes inheriting no_assignment_operator don't generate a default operator=.
-class no_assignment_operator
-{
- private:
- no_assignment_operator& operator=(const no_assignment_operator&);
-};
-
-/** \internal return the index type with the largest number of bits */
-template<typename I1, typename I2>
-struct promote_index_type
-{
- typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
-};
-
-/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
- * can be accessed using value() and setValue().
- * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
- */
-template<typename T, int Value> class variable_if_dynamic
-{
- public:
- EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
- EIGEN_DEVICE_FUNC explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); }
- EIGEN_DEVICE_FUNC static T value() { return T(Value); }
- EIGEN_DEVICE_FUNC void setValue(T) {}
-};
-
-template<typename T> class variable_if_dynamic<T, Dynamic>
-{
- T m_value;
- EIGEN_DEVICE_FUNC variable_if_dynamic() { eigen_assert(false); }
- public:
- EIGEN_DEVICE_FUNC explicit variable_if_dynamic(T value) : m_value(value) {}
- EIGEN_DEVICE_FUNC T value() const { return m_value; }
- EIGEN_DEVICE_FUNC void setValue(T value) { m_value = value; }
-};
-
-/** \internal like variable_if_dynamic but for DynamicIndex
- */
-template<typename T, int Value> class variable_if_dynamicindex
-{
- public:
- EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex)
- EIGEN_DEVICE_FUNC explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); }
- EIGEN_DEVICE_FUNC static T value() { return T(Value); }
- EIGEN_DEVICE_FUNC void setValue(T) {}
-};
-
-template<typename T> class variable_if_dynamicindex<T, DynamicIndex>
-{
- T m_value;
- EIGEN_DEVICE_FUNC variable_if_dynamicindex() { eigen_assert(false); }
- public:
- EIGEN_DEVICE_FUNC explicit variable_if_dynamicindex(T value) : m_value(value) {}
- EIGEN_DEVICE_FUNC T value() const { return m_value; }
- EIGEN_DEVICE_FUNC void setValue(T value) { m_value = value; }
-};
-
-template<typename T> struct functor_traits
-{
- enum
- {
- Cost = 10,
- PacketAccess = false,
- IsRepeatable = false
- };
-};
-
-template<typename T> struct packet_traits;
-
-template<typename T> struct unpacket_traits
-{
- typedef T type;
- typedef T half;
- enum {size=1};
-};
-
-template<typename _Scalar, int _Rows, int _Cols,
- int _Options = AutoAlign |
- ( (_Rows==1 && _Cols!=1) ? RowMajor
- : (_Cols==1 && _Rows!=1) ? ColMajor
- : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
- int _MaxRows = _Rows,
- int _MaxCols = _Cols
-> class make_proper_matrix_type
-{
- enum {
- IsColVector = _Cols==1 && _Rows!=1,
- IsRowVector = _Rows==1 && _Cols!=1,
- Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
- : IsRowVector ? (_Options | RowMajor) & ~ColMajor
- : _Options
- };
- public:
- typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
-};
-
-template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-class compute_matrix_flags
-{
- enum {
- row_major_bit = Options&RowMajor ? RowMajorBit : 0,
- is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
-
- aligned_bit =
- (
- ((Options&DontAlign)==0)
- && (
-#if EIGEN_ALIGN_STATICALLY
- ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % EIGEN_ALIGN_BYTES) == 0))
-#else
- 0
-#endif
-
- ||
-
-#if EIGEN_ALIGN
- is_dynamic_size_storage
-#else
- 0
-#endif
-
- )
- ) ? AlignedBit : 0,
- packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
- };
-
- public:
- enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
-};
-
-template<int _Rows, int _Cols> struct size_at_compile_time
-{
- enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
-};
-
-/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
- * whereas eval is a const reference in the case of a matrix
- */
-
-template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
-template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
-template<typename T> struct plain_matrix_type<T,Dense>
-{
- typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
-};
-
-template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
-{
- typedef Matrix<typename traits<T>::Scalar,
- traits<T>::RowsAtCompileTime,
- traits<T>::ColsAtCompileTime,
- AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
- traits<T>::MaxRowsAtCompileTime,
- traits<T>::MaxColsAtCompileTime
- > type;
-};
-
-template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
-{
- typedef Array<typename traits<T>::Scalar,
- traits<T>::RowsAtCompileTime,
- traits<T>::ColsAtCompileTime,
- AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
- traits<T>::MaxRowsAtCompileTime,
- traits<T>::MaxColsAtCompileTime
- > type;
-};
-
-/* eval : the return type of eval(). For matrices, this is just a const reference
- * in order to avoid a useless copy
- */
-
-template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
-
-template<typename T> struct eval<T,Dense>
-{
- typedef typename plain_matrix_type<T>::type type;
-// typedef typename T::PlainObject type;
-// typedef T::Matrix<typename traits<T>::Scalar,
-// traits<T>::RowsAtCompileTime,
-// traits<T>::ColsAtCompileTime,
-// AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
-// traits<T>::MaxRowsAtCompileTime,
-// traits<T>::MaxColsAtCompileTime
-// > type;
-};
-
-// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
-{
- typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
-};
-
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
-{
- typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
-};
-
-
-
-/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
- */
-template<typename T> struct plain_matrix_type_column_major
-{
- enum { Rows = traits<T>::RowsAtCompileTime,
- Cols = traits<T>::ColsAtCompileTime,
- MaxRows = traits<T>::MaxRowsAtCompileTime,
- MaxCols = traits<T>::MaxColsAtCompileTime
- };
- typedef Matrix<typename traits<T>::Scalar,
- Rows,
- Cols,
- (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
- MaxRows,
- MaxCols
- > type;
-};
-
-/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
- */
-template<typename T> struct plain_matrix_type_row_major
-{
- enum { Rows = traits<T>::RowsAtCompileTime,
- Cols = traits<T>::ColsAtCompileTime,
- MaxRows = traits<T>::MaxRowsAtCompileTime,
- MaxCols = traits<T>::MaxColsAtCompileTime
- };
- typedef Matrix<typename traits<T>::Scalar,
- Rows,
- Cols,
- (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
- MaxRows,
- MaxCols
- > type;
-};
-
-// we should be able to get rid of this one too
-template<typename T> struct must_nest_by_value { enum { ret = false }; };
-
-/** \internal The reference selector for template expressions. The idea is that we don't
- * need to use references for expressions since they are light weight proxy
- * objects which should generate no copying overhead. */
-template <typename T>
-struct ref_selector
-{
- typedef typename conditional<
- bool(traits<T>::Flags & NestByRefBit),
- T const&,
- const T
- >::type type;
-};
-
-/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
-template<typename T1, typename T2>
-struct transfer_constness
-{
- typedef typename conditional<
- bool(internal::is_const<T1>::value),
- typename internal::add_const_on_value_type<T2>::type,
- T2
- >::type type;
-};
-
-/** \internal Determines how a given expression should be nested into another one.
- * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
- * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
- * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
- * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
- * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
- *
- * \param T the type of the expression being nested
- * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
- *
- * Note that if no evaluation occur, then the constness of T is preserved.
- *
- * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
- * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
- * the Product expression uses: nested<S, 3>::type, which turns out to be Matrix3d because the internal logic of
- * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
- * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::type, which turns out to be
- * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
- * in copying it into another matrix.
- */
-template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
-{
- enum {
- // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
- // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
- // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
- // (poor choice of temporaries).
- // it's important that this value can still be squared without integer overflowing.
- DynamicAsInteger = 10000,
- ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
- ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
- CoeffReadCost = traits<T>::CoeffReadCost,
- CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
- NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
- CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
- CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
- };
-
- typedef typename conditional<
- ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
- int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
- ),
- PlainObject,
- typename ref_selector<T>::type
- >::type type;
-};
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-T* const_cast_ptr(const T* ptr)
-{
- return const_cast<T*>(ptr);
-}
-
-template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
-struct dense_xpr_base
-{
- /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
-};
-
-template<typename Derived>
-struct dense_xpr_base<Derived, MatrixXpr>
-{
- typedef MatrixBase<Derived> type;
-};
-
-template<typename Derived>
-struct dense_xpr_base<Derived, ArrayXpr>
-{
- typedef ArrayBase<Derived> type;
-};
-
-/** \internal Helper base class to add a scalar multiple operator
- * overloads for complex types */
-template<typename Derived,typename Scalar,typename OtherScalar,
- bool EnableIt = !is_same<Scalar,OtherScalar>::value >
-struct special_scalar_op_base : public DenseCoeffsBase<Derived>
-{
- // dummy operator* so that the
- // "using special_scalar_op_base::operator*" compiles
- void operator*() const;
-};
-
-template<typename Derived,typename Scalar,typename OtherScalar>
-struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCoeffsBase<Derived>
-{
- const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
- operator*(const OtherScalar& scalar) const
- {
- return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
- (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
- }
-
- inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
- operator*(const OtherScalar& scalar, const Derived& matrix)
- { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
-};
-
-template<typename XprType, typename CastType> struct cast_return_type
-{
- typedef typename XprType::Scalar CurrentScalarType;
- typedef typename remove_all<CastType>::type _CastType;
- typedef typename _CastType::Scalar NewScalarType;
- typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
- const XprType&,CastType>::type type;
-};
-
-template <typename A, typename B> struct promote_storage_type;
-
-template <typename A> struct promote_storage_type<A,A>
-{
- typedef A ret;
-};
-template <typename A> struct promote_storage_type<A, const A>
-{
- typedef A ret;
-};
-template <typename A> struct promote_storage_type<const A, A>
-{
- typedef A ret;
-};
-
-
-
-/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
- * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
- */
-template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
-struct plain_row_type
-{
- typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
- ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
- typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
- ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
-
- typedef typename conditional<
- is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
- MatrixRowType,
- ArrayRowType
- >::type type;
-};
-
-template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
-struct plain_col_type
-{
- typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
- ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
- typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
- ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
-
- typedef typename conditional<
- is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
- MatrixColType,
- ArrayColType
- >::type type;
-};
-
-template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
-struct plain_diag_type
-{
- enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
- max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
- };
- typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
- typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
-
- typedef typename conditional<
- is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
- MatrixDiagType,
- ArrayDiagType
- >::type type;
-};
-
-template<typename ExpressionType>
-struct is_lvalue
-{
- enum { value = !bool(is_const<ExpressionType>::value) &&
- bool(traits<ExpressionType>::Flags & LvalueBit) };
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_XPRHELPER_H