aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Core/arch/AVX/MathFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/Core/arch/AVX/MathFunctions.h')
-rw-r--r--third_party/eigen3/Eigen/src/Core/arch/AVX/MathFunctions.h495
1 files changed, 0 insertions, 495 deletions
diff --git a/third_party/eigen3/Eigen/src/Core/arch/AVX/MathFunctions.h b/third_party/eigen3/Eigen/src/Core/arch/AVX/MathFunctions.h
deleted file mode 100644
index faa5c79021..0000000000
--- a/third_party/eigen3/Eigen/src/Core/arch/AVX/MathFunctions.h
+++ /dev/null
@@ -1,495 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATH_FUNCTIONS_AVX_H
-#define EIGEN_MATH_FUNCTIONS_AVX_H
-
-// For some reason, this function didn't make it into the avxintirn.h
-// used by the compiler, so we'll just wrap it.
-#define _mm256_setr_m128(lo, hi) \
- _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1)
-
-/* The sin, cos, exp, and log functions of this file are loosely derived from
- * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
- */
-
-namespace Eigen {
-
-namespace internal {
-
-// Sine function
-// Computes sin(x) by wrapping x to the interval [-Pi/4,3*Pi/4] and
-// evaluating interpolants in [-Pi/4,Pi/4] or [Pi/4,3*Pi/4]. The interpolants
-// are (anti-)symmetric and thus have only odd/even coefficients
-template <>
-EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
-psin<Packet8f>(const Packet8f& _x) {
- Packet8f x = _x;
-
- // Some useful values.
- _EIGEN_DECLARE_CONST_Packet8i(one, 1);
- _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
- _EIGEN_DECLARE_CONST_Packet8f(two, 2.0f);
- _EIGEN_DECLARE_CONST_Packet8f(one_over_four, 0.25f);
- _EIGEN_DECLARE_CONST_Packet8f(one_over_pi, 3.183098861837907e-01f);
- _EIGEN_DECLARE_CONST_Packet8f(neg_pi_first, -3.140625000000000e+00);
- _EIGEN_DECLARE_CONST_Packet8f(neg_pi_second, -9.670257568359375e-04);
- _EIGEN_DECLARE_CONST_Packet8f(neg_pi_third, -6.278329571784980e-07);
- _EIGEN_DECLARE_CONST_Packet8f(four_over_pi, 1.273239544735163e+00);
-
- // Map x from [-Pi/4,3*Pi/4] to z in [-1,3] and subtract the shifted period.
- Packet8f z = pmul(x, p8f_one_over_pi);
- Packet8f shift = _mm256_floor_ps(padd(z, p8f_one_over_four));
- x = pmadd(shift, p8f_neg_pi_first, x);
- x = pmadd(shift, p8f_neg_pi_second, x);
- x = pmadd(shift, p8f_neg_pi_third, x);
- z = pmul(x, p8f_four_over_pi);
-
- // Make a mask for the entries that need flipping, i.e. wherever the shift
- // is odd.
- Packet8i shift_ints = _mm256_cvtps_epi32(shift);
- Packet8i shift_isodd =
- (__m256i)_mm256_and_ps((__m256)shift_ints, (__m256)p8i_one);
-#ifdef EIGEN_VECTORIZE_AVX2
- Packet8i sign_flip_mask = _mm256_slli_epi32(shift_isodd, 31);
-#else
- __m128i lo =
- _mm_slli_epi32(_mm256_extractf128_si256((__m256i)shift_isodd, 0), 31);
- __m128i hi =
- _mm_slli_epi32(_mm256_extractf128_si256((__m256i)shift_isodd, 1), 31);
- Packet8i sign_flip_mask = _mm256_setr_m128(lo, hi);
-#endif
-
- // Create a mask for which interpolant to use, i.e. if z > 1, then the mask
- // is set to ones for that entry.
- Packet8f ival_mask = _mm256_cmp_ps(z, p8f_one, _CMP_GT_OQ);
-
- // Evaluate the polynomial for the interval [1,3] in z.
- _EIGEN_DECLARE_CONST_Packet8f(coeff_right_0, 9.999999724233232e-01f);
- _EIGEN_DECLARE_CONST_Packet8f(coeff_right_2, -3.084242535619928e-01);
- _EIGEN_DECLARE_CONST_Packet8f(coeff_right_4, 1.584991525700324e-02);
- _EIGEN_DECLARE_CONST_Packet8f(coeff_right_6, -3.188805084631342e-04);
- Packet8f z_minus_two = psub(z, p8f_two);
- Packet8f z_minus_two2 = pmul(z_minus_two, z_minus_two);
- Packet8f right = pmadd(p8f_coeff_right_6, z_minus_two2, p8f_coeff_right_4);
- right = pmadd(right, z_minus_two2, p8f_coeff_right_2);
- right = pmadd(right, z_minus_two2, p8f_coeff_right_0);
-
- // Evaluate the polynomial for the interval [-1,1] in z.
- _EIGEN_DECLARE_CONST_Packet8f(coeff_left_1, 7.853981525427295e-01);
- _EIGEN_DECLARE_CONST_Packet8f(coeff_left_3, -8.074536727092352e-02);
- _EIGEN_DECLARE_CONST_Packet8f(coeff_left_5, 2.489871967827018e-03);
- _EIGEN_DECLARE_CONST_Packet8f(coeff_left_7, -3.587725841214251e-05);
- Packet8f z2 = pmul(z, z);
- Packet8f left = pmadd(p8f_coeff_left_7, z2, p8f_coeff_left_5);
- left = pmadd(left, z2, p8f_coeff_left_3);
- left = pmadd(left, z2, p8f_coeff_left_1);
- left = pmul(left, z);
-
- // Assemble the results, i.e. select the left and right polynomials.
- left = _mm256_andnot_ps(ival_mask, left);
- right = _mm256_and_ps(ival_mask, right);
- Packet8f res = _mm256_or_ps(left, right);
-
- // Flip the sign on the odd intervals and return the result.
- res = _mm256_xor_ps(res, (__m256)sign_flip_mask);
- return res;
-}
-
-// Natural logarithm
-// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
-// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
-// be easily approximated by a polynomial centered on m=1 for stability.
-// TODO(gonnet): Further reduce the interval allowing for lower-degree
-// polynomial interpolants -> ... -> profit!
-template <>
-EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
-plog<Packet8f>(const Packet8f& _x) {
- Packet8f x = _x;
- _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
- _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
- _EIGEN_DECLARE_CONST_Packet8f(126f, 126.0f);
-
- _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inv_mant_mask, ~0x7f800000);
-
- // The smallest non denormalized float number.
- _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(min_norm_pos, 0x00800000);
- _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(minus_inf, 0xff800000);
-
- // Polynomial coefficients.
- _EIGEN_DECLARE_CONST_Packet8f(cephes_SQRTHF, 0.707106781186547524f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p0, 7.0376836292E-2f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p1, -1.1514610310E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p2, 1.1676998740E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p3, -1.2420140846E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p4, +1.4249322787E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p5, -1.6668057665E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p6, +2.0000714765E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p7, -2.4999993993E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p8, +3.3333331174E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q1, -2.12194440e-4f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q2, 0.693359375f);
-
- // invalid_mask is set to true when x is NaN
- Packet8f invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_NGE_UQ);
- Packet8f iszero_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_EQ_OQ);
-
- // Truncate input values to the minimum positive normal.
- x = pmax(x, p8f_min_norm_pos);
-
-// Extract the shifted exponents (No bitwise shifting in regular AVX, so
-// convert to SSE and do it there).
-#ifdef EIGEN_VECTORIZE_AVX2
- Packet8f emm0 = _mm256_cvtepi32_ps(_mm256_srli_epi32((__m256i)x, 23));
-#else
- __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256((__m256i)x, 0), 23);
- __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256((__m256i)x, 1), 23);
- Packet8f emm0 = _mm256_cvtepi32_ps(_mm256_setr_m128(lo, hi));
-#endif
- Packet8f e = _mm256_sub_ps(emm0, p8f_126f);
-
- // Set the exponents to -1, i.e. x are in the range [0.5,1).
- x = _mm256_and_ps(x, p8f_inv_mant_mask);
- x = _mm256_or_ps(x, p8f_half);
-
- // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
- // and shift by -1. The values are then centered around 0, which improves
- // the stability of the polynomial evaluation.
- // if( x < SQRTHF ) {
- // e -= 1;
- // x = x + x - 1.0;
- // } else { x = x - 1.0; }
- Packet8f mask = _mm256_cmp_ps(x, p8f_cephes_SQRTHF, _CMP_LT_OQ);
- Packet8f tmp = _mm256_and_ps(x, mask);
- x = psub(x, p8f_1);
- e = psub(e, _mm256_and_ps(p8f_1, mask));
- x = padd(x, tmp);
-
- Packet8f x2 = pmul(x, x);
- Packet8f x3 = pmul(x2, x);
-
- // Evaluate the polynomial approximant of degree 8 in three parts, probably
- // to improve instruction-level parallelism.
- Packet8f y, y1, y2;
- y = pmadd(p8f_cephes_log_p0, x, p8f_cephes_log_p1);
- y1 = pmadd(p8f_cephes_log_p3, x, p8f_cephes_log_p4);
- y2 = pmadd(p8f_cephes_log_p6, x, p8f_cephes_log_p7);
- y = pmadd(y, x, p8f_cephes_log_p2);
- y1 = pmadd(y1, x, p8f_cephes_log_p5);
- y2 = pmadd(y2, x, p8f_cephes_log_p8);
- y = pmadd(y, x3, y1);
- y = pmadd(y, x3, y2);
- y = pmul(y, x3);
-
- // Add the logarithm of the exponent back to the result of the interpolation.
- y1 = pmul(e, p8f_cephes_log_q1);
- tmp = pmul(x2, p8f_half);
- y = padd(y, y1);
- x = psub(x, tmp);
- y2 = pmul(e, p8f_cephes_log_q2);
- x = padd(x, y);
- x = padd(x, y2);
-
- // Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF.
- return _mm256_or_ps(
- _mm256_andnot_ps(iszero_mask, _mm256_or_ps(x, invalid_mask)),
- _mm256_and_ps(iszero_mask, p8f_minus_inf));
-}
-
-// Exponential function. Works by writing "x = m*log(2) + r" where
-// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
-// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
-template <>
-EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
-pexp<Packet8f>(const Packet8f& _x) {
- _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
- _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
- _EIGEN_DECLARE_CONST_Packet8f(127, 127.0f);
-
- _EIGEN_DECLARE_CONST_Packet8f(exp_hi, 88.3762626647950f);
- _EIGEN_DECLARE_CONST_Packet8f(exp_lo, -88.3762626647949f);
-
- _EIGEN_DECLARE_CONST_Packet8f(cephes_LOG2EF, 1.44269504088896341f);
-
- _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p0, 1.9875691500E-4f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p1, 1.3981999507E-3f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p2, 8.3334519073E-3f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p3, 4.1665795894E-2f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p4, 1.6666665459E-1f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p5, 5.0000001201E-1f);
-
- // Clamp x.
- Packet8f x = pmax(pmin(_x, p8f_exp_hi), p8f_exp_lo);
-
- // Express exp(x) as exp(m*ln(2) + r), start by extracting
- // m = floor(x/ln(2) + 0.5).
- Packet8f m = _mm256_floor_ps(pmadd(x, p8f_cephes_LOG2EF, p8f_half));
-
-// Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
-// subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
-// truncation errors. Note that we don't use the "pmadd" function here to
-// ensure that a precision-preserving FMA instruction is used.
-#ifdef EIGEN_VECTORIZE_FMA
- _EIGEN_DECLARE_CONST_Packet8f(nln2, -0.6931471805599453f);
- Packet8f r = _mm256_fmadd_ps(m, p8f_nln2, x);
-#else
- _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C1, 0.693359375f);
- _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C2, -2.12194440e-4f);
- Packet8f r = psub(x, pmul(m, p8f_cephes_exp_C1));
- r = psub(r, pmul(m, p8f_cephes_exp_C2));
-#endif
-
- Packet8f r2 = pmul(r, r);
-
- // TODO(gonnet): Split into odd/even polynomials and try to exploit
- // instruction-level parallelism.
- Packet8f y = p8f_cephes_exp_p0;
- y = pmadd(y, r, p8f_cephes_exp_p1);
- y = pmadd(y, r, p8f_cephes_exp_p2);
- y = pmadd(y, r, p8f_cephes_exp_p3);
- y = pmadd(y, r, p8f_cephes_exp_p4);
- y = pmadd(y, r, p8f_cephes_exp_p5);
- y = pmadd(y, r2, r);
- y = padd(y, p8f_1);
-
- // Build emm0 = 2^m.
- Packet8i emm0 = _mm256_cvttps_epi32(padd(m, p8f_127));
-#ifdef EIGEN_VECTORIZE_AVX2
- emm0 = _mm256_slli_epi32(emm0, 23);
-#else
- __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(emm0, 0), 23);
- __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(emm0, 1), 23);
- emm0 = _mm256_setr_m128(lo, hi);
-#endif
-
- // Return 2^m * exp(r).
- return pmax(pmul(y, _mm256_castsi256_ps(emm0)), _x);
-}
-template <>
-EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
-pexp<Packet4d>(const Packet4d& _x) {
- Packet4d x = _x;
-
- _EIGEN_DECLARE_CONST_Packet4d(1, 1.0);
- _EIGEN_DECLARE_CONST_Packet4d(2, 2.0);
- _EIGEN_DECLARE_CONST_Packet4d(half, 0.5);
-
- _EIGEN_DECLARE_CONST_Packet4d(exp_hi, 709.437);
- _EIGEN_DECLARE_CONST_Packet4d(exp_lo, -709.436139303);
-
- _EIGEN_DECLARE_CONST_Packet4d(cephes_LOG2EF, 1.4426950408889634073599);
-
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p0, 1.26177193074810590878e-4);
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p1, 3.02994407707441961300e-2);
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p2, 9.99999999999999999910e-1);
-
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q0, 3.00198505138664455042e-6);
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q1, 2.52448340349684104192e-3);
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q2, 2.27265548208155028766e-1);
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q3, 2.00000000000000000009e0);
-
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C1, 0.693145751953125);
- _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C2, 1.42860682030941723212e-6);
- _EIGEN_DECLARE_CONST_Packet4i(1023, 1023);
-
- Packet4d tmp, fx;
-
- // clamp x
- x = pmax(pmin(x, p4d_exp_hi), p4d_exp_lo);
- // Express exp(x) as exp(g + n*log(2)).
- fx = pmadd(p4d_cephes_LOG2EF, x, p4d_half);
-
- // Get the integer modulus of log(2), i.e. the "n" described above.
- fx = _mm256_floor_pd(fx);
-
- // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
- // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
- // digits right.
- tmp = pmul(fx, p4d_cephes_exp_C1);
- Packet4d z = pmul(fx, p4d_cephes_exp_C2);
- x = psub(x, tmp);
- x = psub(x, z);
-
- Packet4d x2 = pmul(x, x);
-
- // Evaluate the numerator polynomial of the rational interpolant.
- Packet4d px = p4d_cephes_exp_p0;
- px = pmadd(px, x2, p4d_cephes_exp_p1);
- px = pmadd(px, x2, p4d_cephes_exp_p2);
- px = pmul(px, x);
-
- // Evaluate the denominator polynomial of the rational interpolant.
- Packet4d qx = p4d_cephes_exp_q0;
- qx = pmadd(qx, x2, p4d_cephes_exp_q1);
- qx = pmadd(qx, x2, p4d_cephes_exp_q2);
- qx = pmadd(qx, x2, p4d_cephes_exp_q3);
-
- // I don't really get this bit, copied from the SSE2 routines, so...
- // TODO(gonnet): Figure out what is going on here, perhaps find a better
- // rational interpolant?
- x = _mm256_div_pd(px, psub(qx, px));
- x = pmadd(p4d_2, x, p4d_1);
-
- // Build e=2^n by constructing the exponents in a 128-bit vector and
- // shifting them to where they belong in double-precision values.
- __m128i emm0 = _mm256_cvtpd_epi32(fx);
- emm0 = _mm_add_epi32(emm0, p4i_1023);
- emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(3, 1, 2, 0));
- __m128i lo = _mm_slli_epi64(emm0, 52);
- __m128i hi = _mm_slli_epi64(_mm_srli_epi64(emm0, 32), 52);
- __m256i e = _mm256_insertf128_si256(_mm256_setzero_si256(), lo, 0);
- e = _mm256_insertf128_si256(e, hi, 1);
-
- // Construct the result 2^n * exp(g) = e * x. The max is used to catch
- // non-finite values in the input.
- return pmax(pmul(x, Packet4d(e)), _x);
-}
-
-// Functions for sqrt.
-// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
-// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
-// exact solution. The main advantage of this approach is not just speed, but
-// also the fact that it can be inlined and pipelined with other computations,
-// further reducing its effective latency.
-#if EIGEN_FAST_MATH
-template <>
-EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
-psqrt<Packet8f>(const Packet8f& _x) {
- _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
- _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
- _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
-
- Packet8f neg_half = pmul(_x, p8f_minus_half);
-
- // select only the inverse sqrt of positive normal inputs (denormals are
- // flushed to zero and cause infs as well).
- Packet8f non_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_GE_OQ);
- Packet8f x = _mm256_and_ps(non_zero_mask, _mm256_rsqrt_ps(_x));
-
- // Do a single step of Newton's iteration.
- x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));
-
- // Multiply the original _x by it's reciprocal square root to extract the
- // square root.
- return pmul(_x, x);
-}
-#else
-template <>
-EIGEN_STRONG_INLINE Packet8f psqrt<Packet8f>(const Packet8f& x) {
- return _mm256_sqrt_ps(x);
-}
-#endif
-template <>
-EIGEN_STRONG_INLINE Packet4d psqrt<Packet4d>(const Packet4d& x) {
- return _mm256_sqrt_pd(x);
-}
-
-// Functions for rsqrt.
-// Almost identical to the sqrt routine, just leave out the last multiplication
-// and fill in NaN/Inf where needed. Note that this function only exists as an
-// iterative version since there is no instruction for diretly computing the
-// reciprocal square root in AVX/AVX2 (there will be one in AVX-512).
-#ifdef EIGEN_FAST_MATH
-template <>
-EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
-prsqrt<Packet8f>(const Packet8f& _x) {
- _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
- _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(nan, 0x7fc00000);
- _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
- _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
- _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
-
- Packet8f neg_half = pmul(_x, p8f_minus_half);
-
- // select only the inverse sqrt of positive normal inputs (denormals are
- // flushed to zero and cause infs as well).
- Packet8f le_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
- Packet8f x = _mm256_andnot_ps(le_zero_mask, _mm256_rsqrt_ps(_x));
-
- // Fill in NaNs and Infs for the negative/zero entries.
- Packet8f neg_mask = _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_LT_OQ);
- Packet8f zero_mask = _mm256_andnot_ps(neg_mask, le_zero_mask);
- Packet8f infs_and_nans = _mm256_or_ps(_mm256_and_ps(neg_mask, p8f_nan),
- _mm256_and_ps(zero_mask, p8f_inf));
-
- // Do a single step of Newton's iteration.
- x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));
-
- // Insert NaNs and Infs in all the right places.
- return _mm256_or_ps(x, infs_and_nans);
-}
-#else
-template <>
-EIGEN_STRONG_INLINE Packet8f prsqrt<Packet8f>(const Packet8f& x) {
- _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
- return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(x));
-}
-#endif
-template <>
-EIGEN_STRONG_INLINE Packet4d prsqrt<Packet4d>(const Packet4d& x) {
- _EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
- return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(x));
-}
-
-// Functions for division.
-// The EIGEN_FAST_MATH version uses the _mm_rcp_ps approximation and one step of
-// Newton's method, at a cost of 1-2 bits of precision as opposed to the exact
-// solution. The main advantage of this approach is not just speed, but also the
-// fact that it can be inlined and pipelined with other computations, further
-// reducing its effective latency.
-#if EIGEN_FAST_DIV
-template <>
-EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
-pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) {
- _EIGEN_DECLARE_CONST_Packet8f(two, 2.0f);
- _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
-
- Packet8f neg_b = pnegate(b);
-
- /* select only the inverse of non-zero b */
- Packet8f non_zero_mask = _mm256_cmp_ps(b, _mm256_setzero_ps(), _CMP_NEQ_OQ);
- Packet8f x = _mm256_and_ps(non_zero_mask, _mm256_rcp_ps(b));
-
- /* One step of Newton's method on b - x^-1 == 0. */
- x = pmul(x, pmadd(neg_b, x, p8f_two));
-
- /* Return Infs wherever there were zeros. */
- return pmul(a, _mm256_or_ps(_mm256_and_ps(non_zero_mask, x),
- _mm256_andnot_ps(non_zero_mask, p8f_inf)));
-}
-#else
-template <>
-EIGEN_STRONG_INLINE Packet8f
-pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) {
- return _mm256_div_ps(a, b);
-}
-#endif
-template <>
-EIGEN_STRONG_INLINE Packet4d
-pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) {
- return _mm256_div_pd(a, b);
-}
-template <>
-EIGEN_STRONG_INLINE Packet8i
-pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/) {
- eigen_assert(false && "packet integer division are not supported by AVX");
- return pset1<Packet8i>(0);
-}
-
-// Identical to the ptanh in GenericPacketMath.h, but for doubles use
-// a small/medium approximation threshold of 0.001.
-template<> EIGEN_STRONG_INLINE Packet4d ptanh_approx_threshold() {
- return pset1<Packet4d>(0.001);
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATH_FUNCTIONS_AVX_H