aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Core/StableNorm.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/Core/StableNorm.h')
-rw-r--r--third_party/eigen3/Eigen/src/Core/StableNorm.h200
1 files changed, 200 insertions, 0 deletions
diff --git a/third_party/eigen3/Eigen/src/Core/StableNorm.h b/third_party/eigen3/Eigen/src/Core/StableNorm.h
new file mode 100644
index 0000000000..c862c0b63e
--- /dev/null
+++ b/third_party/eigen3/Eigen/src/Core/StableNorm.h
@@ -0,0 +1,200 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_STABLENORM_H
+#define EIGEN_STABLENORM_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename ExpressionType, typename Scalar>
+inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
+{
+ using std::max;
+ Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
+
+ if (maxCoeff>scale)
+ {
+ ssq = ssq * numext::abs2(scale/maxCoeff);
+ Scalar tmp = Scalar(1)/maxCoeff;
+ if(tmp > NumTraits<Scalar>::highest())
+ {
+ invScale = NumTraits<Scalar>::highest();
+ scale = Scalar(1)/invScale;
+ }
+ else
+ {
+ scale = maxCoeff;
+ invScale = tmp;
+ }
+ }
+
+ // TODO if the maxCoeff is much much smaller than the current scale,
+ // then we can neglect this sub vector
+ if(scale>Scalar(0)) // if scale==0, then bl is 0
+ ssq += (bl*invScale).squaredNorm();
+}
+
+template<typename Derived>
+inline typename NumTraits<typename traits<Derived>::Scalar>::Real
+blueNorm_impl(const EigenBase<Derived>& _vec)
+{
+ typedef typename Derived::RealScalar RealScalar;
+ typedef typename Derived::Index Index;
+ using std::pow;
+ using std::sqrt;
+ using std::abs;
+ const Derived& vec(_vec.derived());
+ static bool initialized = false;
+ static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
+ if(!initialized)
+ {
+ int ibeta, it, iemin, iemax, iexp;
+ RealScalar eps;
+ // This program calculates the machine-dependent constants
+ // bl, b2, slm, s2m, relerr overfl
+ // from the "basic" machine-dependent numbers
+ // nbig, ibeta, it, iemin, iemax, rbig.
+ // The following define the basic machine-dependent constants.
+ // For portability, the PORT subprograms "ilmaeh" and "rlmach"
+ // are used. For any specific computer, each of the assignment
+ // statements can be replaced
+ ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
+ it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
+ iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
+ iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
+ rbig = (std::numeric_limits<RealScalar>::max)(); // largest floating-point number
+
+ iexp = -((1-iemin)/2);
+ b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange
+ iexp = (iemax + 1 - it)/2;
+ b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange
+
+ iexp = (2-iemin)/2;
+ s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range
+ iexp = - ((iemax+it)/2);
+ s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
+
+ overfl = rbig*s2m; // overflow boundary for abig
+ eps = RealScalar(pow(double(ibeta), 1-it));
+ relerr = sqrt(eps); // tolerance for neglecting asml
+ initialized = true;
+ }
+ Index n = vec.size();
+ RealScalar ab2 = b2 / RealScalar(n);
+ RealScalar asml = RealScalar(0);
+ RealScalar amed = RealScalar(0);
+ RealScalar abig = RealScalar(0);
+ for(typename Derived::InnerIterator it(vec, 0); it; ++it)
+ {
+ RealScalar ax = abs(it.value());
+ if(ax > ab2) abig += numext::abs2(ax*s2m);
+ else if(ax < b1) asml += numext::abs2(ax*s1m);
+ else amed += numext::abs2(ax);
+ }
+ if(abig > RealScalar(0))
+ {
+ abig = sqrt(abig);
+ if(abig > overfl)
+ {
+ return rbig;
+ }
+ if(amed > RealScalar(0))
+ {
+ abig = abig/s2m;
+ amed = sqrt(amed);
+ }
+ else
+ return abig/s2m;
+ }
+ else if(asml > RealScalar(0))
+ {
+ if (amed > RealScalar(0))
+ {
+ abig = sqrt(amed);
+ amed = sqrt(asml) / s1m;
+ }
+ else
+ return sqrt(asml)/s1m;
+ }
+ else
+ return sqrt(amed);
+ asml = numext::mini(abig, amed);
+ abig = numext::maxi(abig, amed);
+ if(asml <= abig*relerr)
+ return abig;
+ else
+ return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
+}
+
+} // end namespace internal
+
+/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
+ * This version use a blockwise two passes algorithm:
+ * 1 - find the absolute largest coefficient \c s
+ * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
+ *
+ * For architecture/scalar types supporting vectorization, this version
+ * is faster than blueNorm(). Otherwise the blueNorm() is much faster.
+ *
+ * \sa norm(), blueNorm(), hypotNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::stableNorm() const
+{
+ using std::sqrt;
+ const Index blockSize = 4096;
+ RealScalar scale(0);
+ RealScalar invScale(1);
+ RealScalar ssq(0); // sum of square
+ enum {
+ Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
+ };
+ Index n = size();
+ Index bi = internal::first_aligned(derived());
+ if (bi>0)
+ internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
+ for (; bi<n; bi+=blockSize)
+ internal::stable_norm_kernel(this->segment(bi,numext::mini(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
+ return scale * sqrt(ssq);
+}
+
+/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
+ * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
+ * ACM TOMS, Vol 4, Issue 1, 1978.
+ *
+ * For architecture/scalar types without vectorization, this version
+ * is much faster than stableNorm(). Otherwise the stableNorm() is faster.
+ *
+ * \sa norm(), stableNorm(), hypotNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::blueNorm() const
+{
+ return internal::blueNorm_impl(*this);
+}
+
+/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
+ * This version use a concatenation of hypot() calls, and it is very slow.
+ *
+ * \sa norm(), stableNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::hypotNorm() const
+{
+ return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_STABLENORM_H