aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Core/MathFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/Core/MathFunctions.h')
-rw-r--r--third_party/eigen3/Eigen/src/Core/MathFunctions.h1089
1 files changed, 0 insertions, 1089 deletions
diff --git a/third_party/eigen3/Eigen/src/Core/MathFunctions.h b/third_party/eigen3/Eigen/src/Core/MathFunctions.h
deleted file mode 100644
index 941f72d224..0000000000
--- a/third_party/eigen3/Eigen/src/Core/MathFunctions.h
+++ /dev/null
@@ -1,1089 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATHFUNCTIONS_H
-#define EIGEN_MATHFUNCTIONS_H
-
-// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
-#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406
-
-namespace Eigen {
-
-// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
-// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
-#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
-long abs(long x) { return (labs(x)); }
-double abs(double x) { return (fabs(x)); }
-float abs(float x) { return (fabsf(x)); }
-long double abs(long double x) { return (fabsl(x)); }
-#endif
-
-namespace internal {
-
-/** \internal \struct global_math_functions_filtering_base
- *
- * What it does:
- * Defines a typedef 'type' as follows:
- * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
- * global_math_functions_filtering_base<T>::type is a typedef for it.
- * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
- *
- * How it's used:
- * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
- * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
- * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
- * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
- * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
- *
- * How it's implemented:
- * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
- * the typename dummy by an integer template parameter, it doesn't work anymore!
- */
-
-template<typename T, typename dummy = void>
-struct global_math_functions_filtering_base
-{
- typedef T type;
-};
-
-template<typename T> struct always_void { typedef void type; };
-
-template<typename T>
-struct global_math_functions_filtering_base
- <T,
- typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
- >
-{
- typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
-};
-
-#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
-#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
-
-/****************************************************************************
-* Implementation of real *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct real_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return x;
- }
-};
-
-template<typename Scalar>
-struct real_default_impl<Scalar,true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- using std::real;
- return real(x);
- }
-};
-
-template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
-
-template<typename Scalar>
-struct real_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of imag *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct imag_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar&)
- {
- return RealScalar(0);
- }
-};
-
-template<typename Scalar>
-struct imag_default_impl<Scalar,true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- using std::imag;
- return imag(x);
- }
-};
-
-template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
-
-template<typename Scalar>
-struct imag_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of real_ref *
-****************************************************************************/
-
-template<typename Scalar>
-struct real_ref_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar& run(Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[0];
- }
- EIGEN_DEVICE_FUNC
- static inline const RealScalar& run(const Scalar& x)
- {
- return reinterpret_cast<const RealScalar*>(&x)[0];
- }
-};
-
-template<typename Scalar>
-struct real_ref_retval
-{
- typedef typename NumTraits<Scalar>::Real & type;
-};
-
-/****************************************************************************
-* Implementation of imag_ref *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex>
-struct imag_ref_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar& run(Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[1];
- }
- EIGEN_DEVICE_FUNC
- static inline const RealScalar& run(const Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[1];
- }
-};
-
-template<typename Scalar>
-struct imag_ref_default_impl<Scalar, false>
-{
- EIGEN_DEVICE_FUNC
- static inline Scalar run(Scalar&)
- {
- return Scalar(0);
- }
- EIGEN_DEVICE_FUNC
- static inline const Scalar run(const Scalar&)
- {
- return Scalar(0);
- }
-};
-
-template<typename Scalar>
-struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
-
-template<typename Scalar>
-struct imag_ref_retval
-{
- typedef typename NumTraits<Scalar>::Real & type;
-};
-
-/****************************************************************************
-* Implementation of conj *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct conj_impl
-{
- EIGEN_DEVICE_FUNC
- static inline Scalar run(const Scalar& x)
- {
- return x;
- }
-};
-
-template<typename Scalar>
-struct conj_impl<Scalar,true>
-{
- EIGEN_DEVICE_FUNC
- static inline Scalar run(const Scalar& x)
- {
- using std::conj;
- return conj(x);
- }
-};
-
-template<typename Scalar>
-struct conj_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of abs2 *
-****************************************************************************/
-
-template<typename Scalar>
-struct abs2_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return x*x;
- }
-};
-
-template<typename RealScalar>
-struct abs2_impl<std::complex<RealScalar> >
-{
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const std::complex<RealScalar>& x)
- {
- return real(x)*real(x) + imag(x)*imag(x);
- }
-};
-
-template<typename Scalar>
-struct abs2_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of norm1 *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex>
-struct norm1_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- using std::abs;
- return abs(real(x)) + abs(imag(x));
- }
-};
-
-template<typename Scalar>
-struct norm1_default_impl<Scalar, false>
-{
- EIGEN_DEVICE_FUNC
- static inline Scalar run(const Scalar& x)
- {
- using std::abs;
- return abs(x);
- }
-};
-
-template<typename Scalar>
-struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
-
-template<typename Scalar>
-struct norm1_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of hypot *
-****************************************************************************/
-
-template<typename Scalar>
-struct hypot_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar& x, const Scalar& y)
- {
- using std::abs;
- using std::sqrt;
- RealScalar _x = abs(x);
- RealScalar _y = abs(y);
- Scalar p, qp;
- if(_x>_y)
- {
- p = _x;
- qp = _y / p;
- }
- else
- {
- p = _y;
- qp = _x / p;
- }
- if(p==RealScalar(0)) return RealScalar(0);
- return p * sqrt(RealScalar(1) + qp*qp);
- }
-};
-
-template<typename Scalar>
-struct hypot_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of cast *
-****************************************************************************/
-
-template<typename OldType, typename NewType>
-struct cast_impl
-{
- EIGEN_DEVICE_FUNC static inline NewType run(const OldType& x)
- {
- return static_cast<NewType>(x);
- }
-};
-
-// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
-
-template<typename OldType, typename NewType>
-EIGEN_DEVICE_FUNC inline NewType cast(const OldType& x)
-{
- return cast_impl<OldType, NewType>::run(x);
-}
-
-/****************************************************************************
-* Implementation of atanh2 *
-****************************************************************************/
-
-template<typename Scalar>
-struct atanh2_impl
-{
- static inline Scalar run(const Scalar& x, const Scalar& r)
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
- using std::abs;
- using std::log;
- using std::sqrt;
- Scalar z = x / r;
- if (r == 0 || abs(z) > sqrt(NumTraits<Scalar>::epsilon()))
- return log((r + x) / (r - x)) / 2;
- else
- return z + z*z*z / 3;
- }
-};
-
-template<typename RealScalar>
-struct atanh2_impl<std::complex<RealScalar> >
-{
- typedef std::complex<RealScalar> Scalar;
- static inline Scalar run(const Scalar& x, const Scalar& r)
- {
- using std::log;
- using std::norm;
- using std::sqrt;
- Scalar z = x / r;
- if (r == Scalar(0) || norm(z) > NumTraits<RealScalar>::epsilon())
- return RealScalar(0.5) * log((r + x) / (r - x));
- else
- return z + z*z*z / RealScalar(3);
- }
-};
-
-template<typename Scalar>
-struct atanh2_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of round *
-****************************************************************************/
-
-#if EIGEN_HAS_CXX11_MATH
- template<typename Scalar>
- struct round_impl {
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
- using std::round;
- return round(x);
- }
- };
-#else
- template<typename Scalar>
- struct round_impl
- {
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
- using std::floor;
- using std::ceil;
- return (x > 0.0) ? floor(x + 0.5) : ceil(x - 0.5);
- }
- };
-#endif
-
-template<typename Scalar>
-struct round_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of arg *
-****************************************************************************/
-
-#if EIGEN_HAS_CXX11_MATH
- template<typename Scalar>
- struct arg_impl {
- static inline Scalar run(const Scalar& x)
- {
- using std::arg;
- return arg(x);
- }
- };
-#else
- template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
- struct arg_default_impl
- {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return (x < 0.0) ? EIGEN_PI : 0.0; }
- };
-
- template<typename Scalar>
- struct arg_default_impl<Scalar,true>
- {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- using std::arg;
- return arg(x);
- }
- };
-
- template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
-#endif
-
-template<typename Scalar>
-struct arg_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of log1p *
-****************************************************************************/
-template<typename Scalar, bool isComplex = NumTraits<Scalar>::IsComplex >
-struct log1p_impl
-{
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
- typedef typename NumTraits<Scalar>::Real RealScalar;
- using std::log;
- Scalar x1p = RealScalar(1) + x;
- return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
- }
-};
-
-#if EIGEN_HAS_CXX11_MATH
-template<typename Scalar>
-struct log1p_impl<Scalar, false> {
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
- using std::log1p;
- return log1p(x);
- }
-};
-#endif
-
-template<typename Scalar>
-struct log1p_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of pow *
-****************************************************************************/
-
-template<typename Scalar, bool IsInteger>
-struct pow_default_impl
-{
- typedef Scalar retval;
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- using std::pow;
- return pow(x, y);
- }
-};
-
-template<typename Scalar>
-struct pow_default_impl<Scalar, true>
-{
- static inline Scalar run(Scalar x, Scalar y)
- {
- Scalar res(1);
- eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
- if(y & 1) res *= x;
- y >>= 1;
- while(y)
- {
- x *= x;
- if(y&1) res *= x;
- y >>= 1;
- }
- return res;
- }
-};
-
-template<typename Scalar>
-struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar>
-struct pow_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of random *
-****************************************************************************/
-
-template<typename Scalar,
- bool IsComplex,
- bool IsInteger>
-struct random_default_impl {};
-
-template<typename Scalar>
-struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar>
-struct random_retval
-{
- typedef Scalar type;
-};
-
-template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
-template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
-
-template<typename Scalar>
-struct random_default_impl<Scalar, false, false>
-{
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
- }
- static inline Scalar run()
- {
- return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
- }
-};
-
-enum {
- meta_floor_log2_terminate,
- meta_floor_log2_move_up,
- meta_floor_log2_move_down,
- meta_floor_log2_bogus
-};
-
-template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
-{
- enum { middle = (lower + upper) / 2,
- value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
- : (n < (1 << middle)) ? int(meta_floor_log2_move_down)
- : (n==0) ? int(meta_floor_log2_bogus)
- : int(meta_floor_log2_move_up)
- };
-};
-
-template<unsigned int n,
- int lower = 0,
- int upper = sizeof(unsigned int) * CHAR_BIT - 1,
- int selector = meta_floor_log2_selector<n, lower, upper>::value>
-struct meta_floor_log2 {};
-
-template<unsigned int n, int lower, int upper>
-struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
-{
- enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
-};
-
-template<unsigned int n, int lower, int upper>
-struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
-{
- enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
-};
-
-template<unsigned int n, int lower, int upper>
-struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
-{
- enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
-};
-
-template<unsigned int n, int lower, int upper>
-struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
-{
- // no value, error at compile time
-};
-
-template<typename Scalar>
-struct random_default_impl<Scalar, false, true>
-{
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX;
- if(y<x)
- return x;
- std::size_t range = ScalarX(y)-ScalarX(x);
- std::size_t offset = 0;
- // rejection sampling
- std::size_t divisor = (range+RAND_MAX-1)/(range+1);
- std::size_t multiplier = (range+RAND_MAX-1)/std::size_t(RAND_MAX);
-
- do {
- offset = ( (std::size_t(std::rand()) * multiplier) / divisor );
- } while (offset > range);
-
- return Scalar(ScalarX(x) + offset);
- }
-
- static inline Scalar run()
- {
-#ifdef EIGEN_MAKING_DOCS
- return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
-#else
- enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
- scalar_bits = sizeof(Scalar) * CHAR_BIT,
- shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
- offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
- };
- return Scalar((std::rand() >> shift) - offset);
-#endif
- }
-};
-
-template<typename Scalar>
-struct random_default_impl<Scalar, true, false>
-{
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- return Scalar(random(real(x), real(y)),
- random(imag(x), imag(y)));
- }
- static inline Scalar run()
- {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- return Scalar(random<RealScalar>(), random<RealScalar>());
- }
-};
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
-{
- return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
-}
-
-} // end namespace internal
-
-/****************************************************************************
-* Generic math functions *
-****************************************************************************/
-
-namespace numext {
-
-#ifndef __CUDA_ARCH__
-template<typename T>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
-{
- EIGEN_USING_STD_MATH(min);
- return min EIGEN_NOT_A_MACRO (x,y);
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
-{
- EIGEN_USING_STD_MATH(max);
- return max EIGEN_NOT_A_MACRO (x,y);
-}
-#else
-template<typename T>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
-{
- return y < x ? y : x;
-}
-template<>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
-{
- return fmin(x, y);
-}
-template<typename T>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
-{
- return x < y ? y : x;
-}
-template<>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
-{
- return fmax(x, y);
-}
-#endif
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
-{
- return internal::real_ref_impl<Scalar>::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
-{
- return internal::imag_ref_impl<Scalar>::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-bool (isfinite)(const T& x)
-{
- #if EIGEN_HAS_CXX11_MATH
- using std::isfinite;
- return isfinite(x);
- #else
- return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
- #endif
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-bool (isfinite)(const std::complex<T>& x)
-{
- return numext::isfinite(numext::real(x)) && numext::isfinite(numext::imag(x));
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-bool (isnan)(const T& x)
-{
- #if EIGEN_HAS_CXX11_MATH
- using std::isnan;
- return isnan(x);
- #else
- return x != x;
- #endif
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-bool (isnan)(const std::complex<T>& x)
-{
- return numext::isnan(numext::real(x)) || numext::isnan(numext::imag(x));
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-bool (isinf)(const T& x)
-{
- #if EIGEN_HAS_CXX11_MATH
- using std::isinf;
- return isinf(x);
- #else
- return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
- #endif
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-bool (isinf)(const std::complex<T>& x)
-{
- return (numext::isinf(numext::real(x)) || numext::isinf(numext::imag(x))) && (!numext::isnan(x));
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-T (floor)(const T& x)
-{
- using std::floor;
- return floor(x);
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-T (ceil)(const T& x)
-{
- using std::ceil;
- return ceil(x);
-}
-
-// Log base 2 for 32 bits positive integers.
-// Conveniently returns 0 for x==0.
-inline int log2(int x)
-{
- eigen_assert(x>=0);
- unsigned int v(x);
- static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- return table[(v * 0x07C4ACDDU) >> 27];
-}
-
-} // end namespace numext
-
-namespace internal {
-
-/****************************************************************************
-* Implementation of fuzzy comparisons *
-****************************************************************************/
-
-template<typename Scalar,
- bool IsComplex,
- bool IsInteger>
-struct scalar_fuzzy_default_impl {};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, false, false>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar> EIGEN_DEVICE_FUNC
- static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
- {
- using std::abs;
- return abs(x) <= abs(y) * prec;
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- using std::abs;
- return abs(x - y) <= numext::mini(abs(x), abs(y)) * prec;
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- return x <= y || isApprox(x, y, prec);
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, false, true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar> EIGEN_DEVICE_FUNC
- static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
- {
- return x == Scalar(0);
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
- {
- return x == y;
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
- {
- return x <= y;
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, true, false>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar>
- static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
- {
- return numext::abs2(x) <= numext::abs2(y) * prec * prec;
- }
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
-inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
-}
-
-template<typename Scalar> EIGEN_DEVICE_FUNC
-inline bool isApprox(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
-}
-
-template<typename Scalar> EIGEN_DEVICE_FUNC
-inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
-}
-
-/******************************************
-*** The special case of the bool type ***
-******************************************/
-
-template<> struct random_impl<bool>
-{
- static inline bool run()
- {
- return random<int>(0,1)==0 ? false : true;
- }
-};
-
-template<> struct scalar_fuzzy_impl<bool>
-{
- typedef bool RealScalar;
-
- template<typename OtherScalar> EIGEN_DEVICE_FUNC
- static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
- {
- return !x;
- }
-
- EIGEN_DEVICE_FUNC
- static inline bool isApprox(bool x, bool y, bool)
- {
- return x == y;
- }
-
- EIGEN_DEVICE_FUNC
- static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
- {
- return (!x) || y;
- }
-
-};
-
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATHFUNCTIONS_H