aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/CholmodSupport/CholmodSupport.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/eigen3/Eigen/src/CholmodSupport/CholmodSupport.h')
-rw-r--r--third_party/eigen3/Eigen/src/CholmodSupport/CholmodSupport.h607
1 files changed, 0 insertions, 607 deletions
diff --git a/third_party/eigen3/Eigen/src/CholmodSupport/CholmodSupport.h b/third_party/eigen3/Eigen/src/CholmodSupport/CholmodSupport.h
deleted file mode 100644
index c449960de4..0000000000
--- a/third_party/eigen3/Eigen/src/CholmodSupport/CholmodSupport.h
+++ /dev/null
@@ -1,607 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CHOLMODSUPPORT_H
-#define EIGEN_CHOLMODSUPPORT_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Scalar, typename CholmodType>
-void cholmod_configure_matrix(CholmodType& mat)
-{
- if (internal::is_same<Scalar,float>::value)
- {
- mat.xtype = CHOLMOD_REAL;
- mat.dtype = CHOLMOD_SINGLE;
- }
- else if (internal::is_same<Scalar,double>::value)
- {
- mat.xtype = CHOLMOD_REAL;
- mat.dtype = CHOLMOD_DOUBLE;
- }
- else if (internal::is_same<Scalar,std::complex<float> >::value)
- {
- mat.xtype = CHOLMOD_COMPLEX;
- mat.dtype = CHOLMOD_SINGLE;
- }
- else if (internal::is_same<Scalar,std::complex<double> >::value)
- {
- mat.xtype = CHOLMOD_COMPLEX;
- mat.dtype = CHOLMOD_DOUBLE;
- }
- else
- {
- eigen_assert(false && "Scalar type not supported by CHOLMOD");
- }
-}
-
-} // namespace internal
-
-/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
- * Note that the data are shared.
- */
-template<typename _Scalar, int _Options, typename _Index>
-cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
-{
- cholmod_sparse res;
- res.nzmax = mat.nonZeros();
- res.nrow = mat.rows();;
- res.ncol = mat.cols();
- res.p = mat.outerIndexPtr();
- res.i = mat.innerIndexPtr();
- res.x = mat.valuePtr();
- res.z = 0;
- res.sorted = 1;
- if(mat.isCompressed())
- {
- res.packed = 1;
- res.nz = 0;
- }
- else
- {
- res.packed = 0;
- res.nz = mat.innerNonZeroPtr();
- }
-
- res.dtype = 0;
- res.stype = -1;
-
- if (internal::is_same<_Index,int>::value)
- {
- res.itype = CHOLMOD_INT;
- }
- else if (internal::is_same<_Index,UF_long>::value)
- {
- res.itype = CHOLMOD_LONG;
- }
- else
- {
- eigen_assert(false && "Index type not supported yet");
- }
-
- // setup res.xtype
- internal::cholmod_configure_matrix<_Scalar>(res);
-
- res.stype = 0;
-
- return res;
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
-{
- cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
- return res;
-}
-
-/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
- * The data are not copied but shared. */
-template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
-cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
-{
- cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
-
- if(UpLo==Upper) res.stype = 1;
- if(UpLo==Lower) res.stype = -1;
-
- return res;
-}
-
-/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
- * The data are not copied but shared. */
-template<typename Derived>
-cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
-{
- EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
- typedef typename Derived::Scalar Scalar;
-
- cholmod_dense res;
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- res.nzmax = res.nrow * res.ncol;
- res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
- res.x = (void*)(mat.derived().data());
- res.z = 0;
-
- internal::cholmod_configure_matrix<Scalar>(res);
-
- return res;
-}
-
-/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
- * The data are not copied but shared. */
-template<typename Scalar, int Flags, typename Index>
-MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
-{
- return MappedSparseMatrix<Scalar,Flags,Index>
- (cm.nrow, cm.ncol, static_cast<Index*>(cm.p)[cm.ncol],
- static_cast<Index*>(cm.p), static_cast<Index*>(cm.i),static_cast<Scalar*>(cm.x) );
-}
-
-enum CholmodMode {
- CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
-};
-
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodBase
- * \brief The base class for the direct Cholesky factorization of Cholmod
- * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
- */
-template<typename _MatrixType, int _UpLo, typename Derived>
-class CholmodBase : internal::noncopyable
-{
- public:
- typedef _MatrixType MatrixType;
- enum { UpLo = _UpLo };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef MatrixType CholMatrixType;
- typedef typename MatrixType::Index Index;
-
- public:
-
- CholmodBase()
- : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
- {
- m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
- cholmod_start(&m_cholmod);
- }
-
- CholmodBase(const MatrixType& matrix)
- : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
- {
- m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
- cholmod_start(&m_cholmod);
- compute(matrix);
- }
-
- ~CholmodBase()
- {
- if(m_cholmodFactor)
- cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
- cholmod_finish(&m_cholmod);
- }
-
- inline Index cols() const { return m_cholmodFactor->n; }
- inline Index rows() const { return m_cholmodFactor->n; }
-
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /** Computes the sparse Cholesky decomposition of \a matrix */
- Derived& compute(const MatrixType& matrix)
- {
- analyzePattern(matrix);
- factorize(matrix);
- return derived();
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<CholmodBase, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<CholmodBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
- }
-
- /** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- if(m_cholmodFactor)
- {
- cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
- m_cholmodFactor = 0;
- }
- cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
- m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
-
- this->m_isInitialized = true;
- this->m_info = Success;
- m_analysisIsOk = true;
- m_factorizationIsOk = false;
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& matrix)
- {
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
- cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
-
- // If the factorization failed, minor is the column at which it did. On success minor == n.
- this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
- m_factorizationIsOk = true;
- }
-
- /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
- * See the Cholmod user guide for details. */
- cholmod_common& cholmod() { return m_cholmod; }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
- {
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
- const Index size = m_cholmodFactor->n;
- EIGEN_UNUSED_VARIABLE(size);
- eigen_assert(size==b.rows());
-
- // note: cd stands for Cholmod Dense
- Rhs& b_ref(b.const_cast_derived());
- cholmod_dense b_cd = viewAsCholmod(b_ref);
- cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
- if(!x_cd)
- {
- this->m_info = NumericalIssue;
- }
- // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
- dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
- cholmod_free_dense(&x_cd, &m_cholmod);
- }
-
- /** \internal */
- template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
- void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
- {
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
- const Index size = m_cholmodFactor->n;
- EIGEN_UNUSED_VARIABLE(size);
- eigen_assert(size==b.rows());
-
- // note: cs stands for Cholmod Sparse
- cholmod_sparse b_cs = viewAsCholmod(b);
- cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
- if(!x_cs)
- {
- this->m_info = NumericalIssue;
- }
- // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
- dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
- cholmod_free_sparse(&x_cs, &m_cholmod);
- }
- #endif // EIGEN_PARSED_BY_DOXYGEN
-
-
- /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
- *
- * During the numerical factorization, an offset term is added to the diagonal coefficients:\n
- * \c d_ii = \a offset + \c d_ii
- *
- * The default is \a offset=0.
- *
- * \returns a reference to \c *this.
- */
- Derived& setShift(const RealScalar& offset)
- {
- m_shiftOffset[0] = offset;
- return derived();
- }
-
- template<typename Stream>
- void dumpMemory(Stream& /*s*/)
- {}
-
- protected:
- mutable cholmod_common m_cholmod;
- cholmod_factor* m_cholmodFactor;
- RealScalar m_shiftOffset[2];
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- int m_factorizationIsOk;
- int m_analysisIsOk;
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSimplicialLLT
- * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
- * using the Cholmod library.
- * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSimplicialLLT() : Base() { init(); }
-
- CholmodSimplicialLLT(const MatrixType& matrix) : Base()
- {
- init();
- compute(matrix);
- }
-
- ~CholmodSimplicialLLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 0;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- m_cholmod.final_ll = 1;
- }
-};
-
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSimplicialLDLT
- * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
- * using the Cholmod library.
- * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSimplicialLDLT() : Base() { init(); }
-
- CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
- {
- init();
- compute(matrix);
- }
-
- ~CholmodSimplicialLDLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- }
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSupernodalLLT
- * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
- * using the Cholmod library.
- * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSupernodalLLT() : Base() { init(); }
-
- CholmodSupernodalLLT(const MatrixType& matrix) : Base()
- {
- init();
- compute(matrix);
- }
-
- ~CholmodSupernodalLLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
- }
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodDecomposition
- * \brief A general Cholesky factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
- * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * This variant permits to change the underlying Cholesky method at runtime.
- * On the other hand, it does not provide access to the result of the factorization.
- * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodDecomposition() : Base() { init(); }
-
- CholmodDecomposition(const MatrixType& matrix) : Base()
- {
- init();
- compute(matrix);
- }
-
- ~CholmodDecomposition() {}
-
- void setMode(CholmodMode mode)
- {
- switch(mode)
- {
- case CholmodAuto:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_AUTO;
- break;
- case CholmodSimplicialLLt:
- m_cholmod.final_asis = 0;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- m_cholmod.final_ll = 1;
- break;
- case CholmodSupernodalLLt:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
- break;
- case CholmodLDLt:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- break;
- default:
- break;
- }
- }
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_AUTO;
- }
-};
-
-namespace internal {
-
-template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
-struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
- : solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
-{
- typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
-struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
- : sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
-{
- typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CHOLMODSUPPORT_H