aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/g3doc/tutorials/pdes/index.md
diff options
context:
space:
mode:
Diffstat (limited to 'tensorflow/g3doc/tutorials/pdes/index.md')
-rwxr-xr-xtensorflow/g3doc/tutorials/pdes/index.md129
1 files changed, 129 insertions, 0 deletions
diff --git a/tensorflow/g3doc/tutorials/pdes/index.md b/tensorflow/g3doc/tutorials/pdes/index.md
new file mode 100755
index 0000000000..1f29e4037c
--- /dev/null
+++ b/tensorflow/g3doc/tutorials/pdes/index.md
@@ -0,0 +1,129 @@
+
+## Basic Setup
+
+
+```
+#Import libraries for simulation
+import tensorflow as tf
+import numpy as np
+
+#Imports for visualization
+import PIL.Image
+from cStringIO import StringIO
+from IPython.display import clear_output, Image, display
+```
+
+
+```
+def DisplayArray(a, fmt='jpeg', rng=[0,1]):
+ """Display an array as a picture."""
+ a = (a - rng[0])/float(rng[1] - rng[0])*255
+ a = np.uint8(np.clip(a, 0, 255))
+ f = StringIO()
+ PIL.Image.fromarray(a).save(f, fmt)
+ display(Image(data=f.getvalue()))
+```
+
+
+```
+sess = tf.InteractiveSession()
+```
+
+## Computational Convenience Functions
+
+
+```
+def make_kernel(a):
+ """Transform a 2D array into a convolution kernel"""
+ a = np.asarray(a)
+ a = a.reshape(list(a.shape) + [1,1])
+ return tf.constant(a, dtype=1)
+
+def simple_conv(x, k):
+ """A simplified 2D convolution operation"""
+ x = tf.expand_dims(tf.expand_dims(x, 0), -1)
+ y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
+ return y[0, :, :, 0]
+
+def laplace(x):
+ """Compute the 2D laplacian of an array"""
+ laplace_k = make_kernel([[0.5, 1.0, 0.5],
+ [1.0, -6., 1.0],
+ [0.5, 1.0, 0.5]])
+ return simple_conv(x, laplace_k)
+```
+
+## Define the PDE
+
+
+```
+N = 500
+```
+
+
+```
+# Initial Conditions -- some rain drops hit a pond
+
+# Set everything to zero
+u_init = np.zeros([N, N], dtype="float32")
+ut_init = np.zeros([N, N], dtype="float32")
+
+# Some rain drops hit a pond at random points
+for n in range(40):
+ a,b = np.random.randint(0, N, 2)
+ u_init[a,b] = np.random.uniform()
+
+DisplayArray(u_init, rng=[-0.1, 0.1])
+```
+
+
+![jpeg](output_8_0.jpe)
+
+
+
+```
+# paramaters
+# eps -- time resolution
+# damping -- wave damping
+eps = tf.placeholder('float', shape=())
+damping = tf.placeholder('float', shape=())
+
+# create variables for simulation state
+U = tf.Variable(u_init)
+Ut = tf.Variable(ut_init)
+
+# discretized PDE update rules
+U_ = U + eps*Ut
+Ut_ = Ut + eps*(laplace(U) - damping*Ut)
+
+# operation to update the state
+step = tf.group(
+ U.Assign(U_),
+ Ut.Assign(Ut_) )
+```
+
+## Run The Simulation
+
+
+```
+# initialize state to initial conditions
+tf.InitializeAllVariables().Run()
+
+# Run 1000 steps of PDE
+for i in range(1000):
+ # Step simulation
+ step.Run({eps: 0.03, damping: 0.04})
+ # Visualize every 50 steps
+ if i % 50 == 0:
+ clear_output()
+ DisplayArray(U.eval(), rng=[-0.1, 0.1])
+```
+
+
+![jpeg](output_11_0.jpe)
+
+
+
+```
+
+```