aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/docs_src/tutorials/non-ml/pdes.md
diff options
context:
space:
mode:
Diffstat (limited to 'tensorflow/docs_src/tutorials/non-ml/pdes.md')
-rw-r--r--tensorflow/docs_src/tutorials/non-ml/pdes.md140
1 files changed, 140 insertions, 0 deletions
diff --git a/tensorflow/docs_src/tutorials/non-ml/pdes.md b/tensorflow/docs_src/tutorials/non-ml/pdes.md
new file mode 100644
index 0000000000..b5a0fa834a
--- /dev/null
+++ b/tensorflow/docs_src/tutorials/non-ml/pdes.md
@@ -0,0 +1,140 @@
+# Partial Differential Equations
+
+TensorFlow isn't just for machine learning. Here we give a (somewhat
+pedestrian) example of using TensorFlow for simulating the behavior of a
+[partial differential equation](
+https://en.wikipedia.org/wiki/Partial_differential_equation).
+We'll simulate the surface of square pond as a few raindrops land on it.
+
+
+## Basic Setup
+
+A few imports we'll need.
+
+```python
+#Import libraries for simulation
+import tensorflow as tf
+import numpy as np
+
+#Imports for visualization
+import PIL.Image
+from io import BytesIO
+from IPython.display import clear_output, Image, display
+```
+
+A function for displaying the state of the pond's surface as an image.
+
+```python
+def DisplayArray(a, fmt='jpeg', rng=[0,1]):
+ """Display an array as a picture."""
+ a = (a - rng[0])/float(rng[1] - rng[0])*255
+ a = np.uint8(np.clip(a, 0, 255))
+ f = BytesIO()
+ PIL.Image.fromarray(a).save(f, fmt)
+ clear_output(wait = True)
+ display(Image(data=f.getvalue()))
+```
+
+Here we start an interactive TensorFlow session for convenience in playing
+around. A regular session would work as well if we were doing this in an
+executable .py file.
+
+```python
+sess = tf.InteractiveSession()
+```
+
+## Computational Convenience Functions
+
+
+```python
+def make_kernel(a):
+ """Transform a 2D array into a convolution kernel"""
+ a = np.asarray(a)
+ a = a.reshape(list(a.shape) + [1,1])
+ return tf.constant(a, dtype=1)
+
+def simple_conv(x, k):
+ """A simplified 2D convolution operation"""
+ x = tf.expand_dims(tf.expand_dims(x, 0), -1)
+ y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
+ return y[0, :, :, 0]
+
+def laplace(x):
+ """Compute the 2D laplacian of an array"""
+ laplace_k = make_kernel([[0.5, 1.0, 0.5],
+ [1.0, -6., 1.0],
+ [0.5, 1.0, 0.5]])
+ return simple_conv(x, laplace_k)
+```
+
+## Define the PDE
+
+Our pond is a perfect 500 x 500 square, as is the case for most ponds found in
+nature.
+
+```python
+N = 500
+```
+
+Here we create our pond and hit it with some rain drops.
+
+```python
+# Initial Conditions -- some rain drops hit a pond
+
+# Set everything to zero
+u_init = np.zeros([N, N], dtype=np.float32)
+ut_init = np.zeros([N, N], dtype=np.float32)
+
+# Some rain drops hit a pond at random points
+for n in range(40):
+ a,b = np.random.randint(0, N, 2)
+ u_init[a,b] = np.random.uniform()
+
+DisplayArray(u_init, rng=[-0.1, 0.1])
+```
+
+![jpeg](https://www.tensorflow.org/images/pde_output_1.jpg)
+
+
+Now let's specify the details of the differential equation.
+
+
+```python
+# Parameters:
+# eps -- time resolution
+# damping -- wave damping
+eps = tf.placeholder(tf.float32, shape=())
+damping = tf.placeholder(tf.float32, shape=())
+
+# Create variables for simulation state
+U = tf.Variable(u_init)
+Ut = tf.Variable(ut_init)
+
+# Discretized PDE update rules
+U_ = U + eps * Ut
+Ut_ = Ut + eps * (laplace(U) - damping * Ut)
+
+# Operation to update the state
+step = tf.group(
+ U.assign(U_),
+ Ut.assign(Ut_))
+```
+
+## Run The Simulation
+
+This is where it gets fun -- running time forward with a simple for loop.
+
+```python
+# Initialize state to initial conditions
+tf.global_variables_initializer().run()
+
+# Run 1000 steps of PDE
+for i in range(1000):
+ # Step simulation
+ step.run({eps: 0.03, damping: 0.04})
+ DisplayArray(U.eval(), rng=[-0.1, 0.1])
+```
+
+![jpeg](../../images/pde_output_2.jpg)
+
+Look! Ripples!