aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/docs_src/tutorials/non-ml/mandelbrot.md
diff options
context:
space:
mode:
Diffstat (limited to 'tensorflow/docs_src/tutorials/non-ml/mandelbrot.md')
-rw-r--r--tensorflow/docs_src/tutorials/non-ml/mandelbrot.md116
1 files changed, 0 insertions, 116 deletions
diff --git a/tensorflow/docs_src/tutorials/non-ml/mandelbrot.md b/tensorflow/docs_src/tutorials/non-ml/mandelbrot.md
deleted file mode 100644
index 1c0a548129..0000000000
--- a/tensorflow/docs_src/tutorials/non-ml/mandelbrot.md
+++ /dev/null
@@ -1,116 +0,0 @@
-# Mandelbrot Set
-
-Visualizing the [Mandelbrot set](https://en.wikipedia.org/wiki/Mandelbrot_set)
-doesn't have anything to do with machine learning, but it makes for a fun
-example of how one can use TensorFlow for general mathematics. This is
-actually a pretty naive implementation of the visualization, but it makes the
-point. (We may end up providing a more elaborate implementation down the line
-to produce more truly beautiful images.)
-
-
-## Basic Setup
-
-We'll need a few imports to get started.
-
-```python
-# Import libraries for simulation
-import tensorflow as tf
-import numpy as np
-
-# Imports for visualization
-import PIL.Image
-from io import BytesIO
-from IPython.display import Image, display
-```
-
-Now we'll define a function to actually display the image once we have
-iteration counts.
-
-```python
-def DisplayFractal(a, fmt='jpeg'):
- """Display an array of iteration counts as a
- colorful picture of a fractal."""
- a_cyclic = (6.28*a/20.0).reshape(list(a.shape)+[1])
- img = np.concatenate([10+20*np.cos(a_cyclic),
- 30+50*np.sin(a_cyclic),
- 155-80*np.cos(a_cyclic)], 2)
- img[a==a.max()] = 0
- a = img
- a = np.uint8(np.clip(a, 0, 255))
- f = BytesIO()
- PIL.Image.fromarray(a).save(f, fmt)
- display(Image(data=f.getvalue()))
-```
-
-## Session and Variable Initialization
-
-For playing around like this, we often use an interactive session, but a regular
-session would work as well.
-
-```python
-sess = tf.InteractiveSession()
-```
-
-It's handy that we can freely mix NumPy and TensorFlow.
-
-```python
-# Use NumPy to create a 2D array of complex numbers
-
-Y, X = np.mgrid[-1.3:1.3:0.005, -2:1:0.005]
-Z = X+1j*Y
-```
-
-Now we define and initialize TensorFlow tensors.
-
-```python
-xs = tf.constant(Z.astype(np.complex64))
-zs = tf.Variable(xs)
-ns = tf.Variable(tf.zeros_like(xs, tf.float32))
-```
-
-TensorFlow requires that you explicitly initialize variables before using them.
-
-```python
-tf.global_variables_initializer().run()
-```
-
-## Defining and Running the Computation
-
-Now we specify more of the computation...
-
-```python
-# Compute the new values of z: z^2 + x
-zs_ = zs*zs + xs
-
-# Have we diverged with this new value?
-not_diverged = tf.abs(zs_) < 4
-
-# Operation to update the zs and the iteration count.
-#
-# Note: We keep computing zs after they diverge! This
-# is very wasteful! There are better, if a little
-# less simple, ways to do this.
-#
-step = tf.group(
- zs.assign(zs_),
- ns.assign_add(tf.cast(not_diverged, tf.float32))
- )
-```
-
-... and run it for a couple hundred steps
-
-```python
-for i in range(200): step.run()
-```
-
-Let's see what we've got.
-
-```python
-DisplayFractal(ns.eval())
-```
-
-![jpeg](https://www.tensorflow.org/images/mandelbrot_output.jpg)
-
-Not bad!
-
-