aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/docs_src/tutorials/non-ml/mandelbrot.md
diff options
context:
space:
mode:
Diffstat (limited to 'tensorflow/docs_src/tutorials/non-ml/mandelbrot.md')
-rw-r--r--tensorflow/docs_src/tutorials/non-ml/mandelbrot.md116
1 files changed, 116 insertions, 0 deletions
diff --git a/tensorflow/docs_src/tutorials/non-ml/mandelbrot.md b/tensorflow/docs_src/tutorials/non-ml/mandelbrot.md
new file mode 100644
index 0000000000..1c0a548129
--- /dev/null
+++ b/tensorflow/docs_src/tutorials/non-ml/mandelbrot.md
@@ -0,0 +1,116 @@
+# Mandelbrot Set
+
+Visualizing the [Mandelbrot set](https://en.wikipedia.org/wiki/Mandelbrot_set)
+doesn't have anything to do with machine learning, but it makes for a fun
+example of how one can use TensorFlow for general mathematics. This is
+actually a pretty naive implementation of the visualization, but it makes the
+point. (We may end up providing a more elaborate implementation down the line
+to produce more truly beautiful images.)
+
+
+## Basic Setup
+
+We'll need a few imports to get started.
+
+```python
+# Import libraries for simulation
+import tensorflow as tf
+import numpy as np
+
+# Imports for visualization
+import PIL.Image
+from io import BytesIO
+from IPython.display import Image, display
+```
+
+Now we'll define a function to actually display the image once we have
+iteration counts.
+
+```python
+def DisplayFractal(a, fmt='jpeg'):
+ """Display an array of iteration counts as a
+ colorful picture of a fractal."""
+ a_cyclic = (6.28*a/20.0).reshape(list(a.shape)+[1])
+ img = np.concatenate([10+20*np.cos(a_cyclic),
+ 30+50*np.sin(a_cyclic),
+ 155-80*np.cos(a_cyclic)], 2)
+ img[a==a.max()] = 0
+ a = img
+ a = np.uint8(np.clip(a, 0, 255))
+ f = BytesIO()
+ PIL.Image.fromarray(a).save(f, fmt)
+ display(Image(data=f.getvalue()))
+```
+
+## Session and Variable Initialization
+
+For playing around like this, we often use an interactive session, but a regular
+session would work as well.
+
+```python
+sess = tf.InteractiveSession()
+```
+
+It's handy that we can freely mix NumPy and TensorFlow.
+
+```python
+# Use NumPy to create a 2D array of complex numbers
+
+Y, X = np.mgrid[-1.3:1.3:0.005, -2:1:0.005]
+Z = X+1j*Y
+```
+
+Now we define and initialize TensorFlow tensors.
+
+```python
+xs = tf.constant(Z.astype(np.complex64))
+zs = tf.Variable(xs)
+ns = tf.Variable(tf.zeros_like(xs, tf.float32))
+```
+
+TensorFlow requires that you explicitly initialize variables before using them.
+
+```python
+tf.global_variables_initializer().run()
+```
+
+## Defining and Running the Computation
+
+Now we specify more of the computation...
+
+```python
+# Compute the new values of z: z^2 + x
+zs_ = zs*zs + xs
+
+# Have we diverged with this new value?
+not_diverged = tf.abs(zs_) < 4
+
+# Operation to update the zs and the iteration count.
+#
+# Note: We keep computing zs after they diverge! This
+# is very wasteful! There are better, if a little
+# less simple, ways to do this.
+#
+step = tf.group(
+ zs.assign(zs_),
+ ns.assign_add(tf.cast(not_diverged, tf.float32))
+ )
+```
+
+... and run it for a couple hundred steps
+
+```python
+for i in range(200): step.run()
+```
+
+Let's see what we've got.
+
+```python
+DisplayFractal(ns.eval())
+```
+
+![jpeg](https://www.tensorflow.org/images/mandelbrot_output.jpg)
+
+Not bad!
+
+