aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/docs_src/api_guides/python/reading_data.md
diff options
context:
space:
mode:
Diffstat (limited to 'tensorflow/docs_src/api_guides/python/reading_data.md')
-rw-r--r--tensorflow/docs_src/api_guides/python/reading_data.md24
1 files changed, 12 insertions, 12 deletions
diff --git a/tensorflow/docs_src/api_guides/python/reading_data.md b/tensorflow/docs_src/api_guides/python/reading_data.md
index 78c36d965c..9f555ee85d 100644
--- a/tensorflow/docs_src/api_guides/python/reading_data.md
+++ b/tensorflow/docs_src/api_guides/python/reading_data.md
@@ -1,7 +1,7 @@
# Reading data
Note: The preferred way to feed data into a tensorflow program is using the
-@{$datasets$`tf.data` API}.
+[`tf.data` API](../../guide/datasets.md).
There are four methods of getting data into a TensorFlow program:
@@ -16,7 +16,7 @@ There are four methods of getting data into a TensorFlow program:
## `tf.data` API
-See the @{$guide/datasets} for an in-depth explanation of `tf.data.Dataset`.
+See the [Importing Data](../../guide/datasets.md) for an in-depth explanation of `tf.data.Dataset`.
The `tf.data` API enables you to extract and preprocess data
from different input/file formats, and apply transformations such as batching,
shuffling, and mapping functions over the dataset. This is an improved version
@@ -56,8 +56,8 @@ in
## `QueueRunner`
Warning: This section discusses implementing input pipelines using the
-queue-based APIs which can be cleanly replaced by the @{$datasets$`tf.data`
-API}.
+queue-based APIs which can be cleanly replaced by the [`tf.data`
+API](../../guide/datasets.md).
A typical queue-based pipeline for reading records from files has the following stages:
@@ -154,14 +154,14 @@ a uint8 tensor, standard operations can slice out each piece and reformat as
needed. For CIFAR-10, you can see how to do the reading and decoding in
[`tensorflow_models/tutorials/image/cifar10/cifar10_input.py`](https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10/cifar10_input.py)
and described in
-@{$deep_cnn#prepare-the-data$this tutorial}.
+[this tutorial](../../tutorials/images/deep_cnn.md#prepare-the-data).
#### Standard TensorFlow format
Another approach is to convert whatever data you have into a supported format.
This approach makes it easier to mix and match data sets and network
architectures. The recommended format for TensorFlow is a
-@{$python/python_io#tfrecords_format_details$TFRecords file}
+[TFRecords file](../../api_guides/python/python_io.md#tfrecords_format_details)
containing
[`tf.train.Example` protocol buffers](https://www.tensorflow.org/code/tensorflow/core/example/example.proto)
(which contain
@@ -279,7 +279,7 @@ This can be important:
How many threads do you need? the `tf.train.shuffle_batch*` functions add a
summary to the graph that indicates how full the example queue is. If you have
enough reading threads, that summary will stay above zero. You can
-@{$summaries_and_tensorboard$view your summaries as training progresses using TensorBoard}.
+[view your summaries as training progresses using TensorBoard](../../guide/summaries_and_tensorboard.md).
### Creating threads to prefetch using `QueueRunner` objects
@@ -368,7 +368,7 @@ threads got an error when running some operation (or an ordinary Python
exception).
For more about threading, queues, QueueRunners, and Coordinators
-@{$threading_and_queues$see here}.
+[see here](../../api_guides/python/threading_and_queues.md).
#### Aside: How clean shut-down when limiting epochs works
@@ -501,18 +501,18 @@ sessions, maybe in separate processes:
model that reads validation input data.
This is what is done `tf.estimator` and manually in
-@{$deep_cnn#save-and-restore-checkpoints$the example CIFAR-10 model}.
+[the example CIFAR-10 model](../../tutorials/images/deep_cnn.md#save-and-restore-checkpoints).
This has a couple of benefits:
* The eval is performed on a single snapshot of the trained variables.
* You can perform the eval even after training has completed and exited.
You can have the train and eval in the same graph in the same process, and share
-their trained variables or layers. See @{$variables$the shared variables tutorial}.
+their trained variables or layers. See [the shared variables tutorial](../../guide/variables.md).
To support the single-graph approach
-@{$guide/datasets$`tf.data`} also supplies
-@{$guide/datasets#creating_an_iterator$advanced iterator types} that
+[`tf.data`](../../guide/datasets.md) also supplies
+[advanced iterator types](../../guide/datasets.md#creating_an_iterator) that
that allow the user to change the input pipeline without rebuilding the graph or
session.