aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/lite/kernels/internal
diff options
context:
space:
mode:
Diffstat (limited to 'tensorflow/contrib/lite/kernels/internal')
-rw-r--r--tensorflow/contrib/lite/kernels/internal/BUILD22
-rw-r--r--tensorflow/contrib/lite/kernels/internal/common.h133
-rw-r--r--tensorflow/contrib/lite/kernels/internal/kernel_utils.cc23
-rw-r--r--tensorflow/contrib/lite/kernels/internal/optimized/legacy_optimized_ops.h239
-rw-r--r--tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.cc71
-rw-r--r--tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.h4
-rw-r--r--tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h797
-rw-r--r--tensorflow/contrib/lite/kernels/internal/optimized/tensor_utils_impl.h6
-rw-r--r--tensorflow/contrib/lite/kernels/internal/quantization_util.h10
-rw-r--r--tensorflow/contrib/lite/kernels/internal/reference/legacy_reference_ops.h234
-rw-r--r--tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.cc7
-rw-r--r--tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.h10
-rw-r--r--tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h1039
-rw-r--r--tensorflow/contrib/lite/kernels/internal/tensor_utils.h4
-rw-r--r--tensorflow/contrib/lite/kernels/internal/tensor_utils_test.cc16
-rw-r--r--tensorflow/contrib/lite/kernels/internal/types.h120
16 files changed, 1640 insertions, 1095 deletions
diff --git a/tensorflow/contrib/lite/kernels/internal/BUILD b/tensorflow/contrib/lite/kernels/internal/BUILD
index 7962fcbc9d..3a855fe3dd 100644
--- a/tensorflow/contrib/lite/kernels/internal/BUILD
+++ b/tensorflow/contrib/lite/kernels/internal/BUILD
@@ -232,6 +232,7 @@ cc_library(
cc_test(
name = "tensor_test",
srcs = ["tensor_test.cc"],
+ tags = ["no_oss"],
deps = [
":reference",
"@com_google_googletest//:gtest",
@@ -260,6 +261,7 @@ cc_library(
cc_test(
name = "quantization_util_test",
srcs = ["quantization_util_test.cc"],
+ tags = ["no_oss"],
deps = [
":quantization_util",
"@com_google_googletest//:gtest",
@@ -505,7 +507,10 @@ cc_test(
"//conditions:default": [],
}),
linkstatic = 1,
- tags = ["tflite_not_portable_ios"],
+ tags = [
+ "no_oss",
+ "tflite_not_portable_ios",
+ ],
deps = [
":tensor_utils",
"//tensorflow/contrib/lite:builtin_op_data",
@@ -517,6 +522,7 @@ cc_test(
cc_test(
name = "depthwiseconv_float_test",
srcs = ["depthwiseconv_float_test.cc"],
+ tags = ["no_oss"],
deps = [
":optimized_base",
":reference_base",
@@ -529,6 +535,7 @@ cc_test(
cc_test(
name = "depthwiseconv_quantized_test",
srcs = ["depthwiseconv_quantized_test.cc"],
+ tags = ["no_oss"],
deps = [
":optimized_base",
":reference_base",
@@ -541,7 +548,10 @@ cc_test(
cc_test(
name = "resize_bilinear_test",
srcs = ["resize_bilinear_test.cc"],
- tags = ["tflite_not_portable"],
+ tags = [
+ "no_oss",
+ "tflite_not_portable",
+ ],
deps = [
":optimized_base",
":reference_base",
@@ -557,6 +567,7 @@ cc_test(
srcs = [
"softmax_quantized_test.cc",
],
+ tags = ["no_oss"],
deps = [
":optimized_base",
":quantization_util",
@@ -572,7 +583,10 @@ cc_test(
srcs = [
"logsoftmax_quantized_test.cc",
],
- tags = ["tflite_not_portable"],
+ tags = [
+ "no_oss",
+ "tflite_not_portable",
+ ],
deps = [
":optimized_base",
":quantization_util",
@@ -585,6 +599,7 @@ cc_test(
cc_test(
name = "log_quantized_test",
srcs = ["log_quantized_test.cc"],
+ tags = ["no_oss"],
deps = [
":optimized_base",
":reference_base",
@@ -611,6 +626,7 @@ cc_library(
cc_test(
name = "batch_to_space_nd_test",
srcs = ["batch_to_space_nd_test.cc"],
+ tags = ["no_oss"],
deps = [
":optimized_base",
"@com_google_googletest//:gtest_main",
diff --git a/tensorflow/contrib/lite/kernels/internal/common.h b/tensorflow/contrib/lite/kernels/internal/common.h
index b86ca49c11..310a8980e6 100644
--- a/tensorflow/contrib/lite/kernels/internal/common.h
+++ b/tensorflow/contrib/lite/kernels/internal/common.h
@@ -127,6 +127,139 @@ int CountLeadingZeros(T integer_input) {
return leading_zeros;
}
+// DO NOT USE THIS STRUCT FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING
+// BROADCASTING.
+//
+// NdArrayDesc<N> describes the shape and memory layout of an N-dimensional
+// rectangular array of numbers.
+//
+// NdArrayDesc<N> is basically identical to Dims<N> defined in types.h.
+// However, as Dims<N> is to be deprecated, this class exists as an adaptor
+// to enable simple unoptimized implementations of element-wise broadcasting
+// operations.
+template <int N>
+struct NdArrayDesc {
+ // The "extent" of each dimension. Indices along dimension d must be in the
+ // half-open interval [0, extents[d]).
+ int extents[N];
+
+ // The number of *elements* (not bytes) between consecutive indices of each
+ // dimension.
+ int strides[N];
+};
+
+// DO NOT USE THIS FUNCTION FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING
+// BROADCASTING.
+//
+// Same as Offset(), except takes as NdArrayDesc<N> instead of Dims<N>.
+inline int SubscriptToIndex(const NdArrayDesc<4>& desc, int i0, int i1, int i2,
+ int i3) {
+ TFLITE_DCHECK(i0 >= 0 && i0 < desc.extents[0]);
+ TFLITE_DCHECK(i1 >= 0 && i1 < desc.extents[1]);
+ TFLITE_DCHECK(i2 >= 0 && i2 < desc.extents[2]);
+ TFLITE_DCHECK(i3 >= 0 && i3 < desc.extents[3]);
+ return i0 * desc.strides[0] + i1 * desc.strides[1] + i2 * desc.strides[2] +
+ i3 * desc.strides[3];
+}
+
+// Given the dimensions of the operands for an element-wise binary broadcast,
+// adjusts them so that they can be directly iterated over with simple loops.
+// Returns the adjusted dims as instances of NdArrayDesc in 'desc0_out' and
+// 'desc1_out'. 'desc0_out' and 'desc1_out' cannot be nullptr.
+//
+// This function assumes that the two input shapes are compatible up to
+// broadcasting and the shorter one has already been prepended with 1s to be the
+// same length. E.g., if shape0 is (1, 16, 16, 64) and shape1 is (1, 64),
+// shape1 must already have been prepended to be (1, 1, 1, 64). Recall that
+// Dims<N> refer to shapes in reverse order. In this case, input0_dims will be
+// (64, 16, 16, 1) and input1_dims will be (64, 1, 1, 1).
+//
+// When two shapes are compatible up to broadcasting, for each dimension d,
+// the input extents are either equal, or one of them is 1.
+//
+// This function performs the following for each dimension d:
+// - If the extents are equal, then do nothing since the loop that walks over
+// both of the input arrays is correct.
+// - Otherwise, one (and only one) of the extents must be 1. Say extent0 is 1
+// and extent1 is e1. Then set extent0 to e1 and stride0 *to 0*. This allows
+// array0 to be referenced *at any index* in dimension d and still access the
+// same slice.
+template <int N>
+inline void NdArrayDescsForElementwiseBroadcast(const Dims<N>& input0_dims,
+ const Dims<N>& input1_dims,
+ NdArrayDesc<N>* desc0_out,
+ NdArrayDesc<N>* desc1_out) {
+ TFLITE_DCHECK(desc0_out != nullptr);
+ TFLITE_DCHECK(desc1_out != nullptr);
+
+ // Copy dims to desc.
+ for (int i = 0; i < N; ++i) {
+ desc0_out->extents[i] = input0_dims.sizes[i];
+ desc0_out->strides[i] = input0_dims.strides[i];
+ desc1_out->extents[i] = input1_dims.sizes[i];
+ desc1_out->strides[i] = input1_dims.strides[i];
+ }
+
+ // Walk over each dimension. If the extents are equal do nothing.
+ // Otherwise, set the desc with extent 1 to have extent equal to the other and
+ // stride 0.
+ for (int i = 0; i < N; ++i) {
+ const int extent0 = ArraySize(input0_dims, i);
+ const int extent1 = ArraySize(input1_dims, i);
+ if (extent0 != extent1) {
+ if (extent0 == 1) {
+ desc0_out->strides[i] = 0;
+ desc0_out->extents[i] = extent1;
+ } else {
+ TFLITE_DCHECK_EQ(extent1, 1);
+ desc1_out->strides[i] = 0;
+ desc1_out->extents[i] = extent0;
+ }
+ }
+ }
+}
+
+template <int N>
+inline void NdArrayDescsForElementwiseBroadcast(
+ const RuntimeShape& input0_shape, const RuntimeShape& input1_shape,
+ NdArrayDesc<N>* desc0_out, NdArrayDesc<N>* desc1_out) {
+ TFLITE_DCHECK(desc0_out != nullptr);
+ TFLITE_DCHECK(desc1_out != nullptr);
+
+ auto extended_input0_shape = RuntimeShape::ExtendedShape(N, input0_shape);
+ auto extended_input1_shape = RuntimeShape::ExtendedShape(N, input1_shape);
+
+ // Copy dims to desc, calculating strides.
+ int desc0_stride = 1;
+ int desc1_stride = 1;
+ for (int i = N - 1; i >= 0; --i) {
+ desc0_out->extents[i] = extended_input0_shape.Dims(i);
+ desc0_out->strides[i] = desc0_stride;
+ desc0_stride *= extended_input0_shape.Dims(i);
+ desc1_out->extents[i] = extended_input1_shape.Dims(i);
+ desc1_out->strides[i] = desc1_stride;
+ desc1_stride *= extended_input1_shape.Dims(i);
+ }
+
+ // Walk over each dimension. If the extents are equal do nothing.
+ // Otherwise, set the desc with extent 1 to have extent equal to the other and
+ // stride 0.
+ for (int i = 0; i < N; ++i) {
+ const int extent0 = extended_input0_shape.Dims(i);
+ const int extent1 = extended_input1_shape.Dims(i);
+ if (extent0 != extent1) {
+ if (extent0 == 1) {
+ desc0_out->strides[i] = 0;
+ desc0_out->extents[i] = extent1;
+ } else {
+ TFLITE_DCHECK_EQ(extent1, 1);
+ desc1_out->strides[i] = 0;
+ desc1_out->extents[i] = extent0;
+ }
+ }
+ }
+}
+
} // namespace tflite
#endif // TENSORFLOW_CONTRIB_LITE_KERNELS_INTERNAL_COMMON_H_
diff --git a/tensorflow/contrib/lite/kernels/internal/kernel_utils.cc b/tensorflow/contrib/lite/kernels/internal/kernel_utils.cc
index a0e382edb6..200f2f1515 100644
--- a/tensorflow/contrib/lite/kernels/internal/kernel_utils.cc
+++ b/tensorflow/contrib/lite/kernels/internal/kernel_utils.cc
@@ -255,14 +255,6 @@ void LstmStep(
output_state_ptr);
}
-// TODO(alanchiao): move this to tensor_utils.
-void VectorMultiply(const int8_t* vector, const int v_size, const float scale,
- float* result) {
- for (int i = 0; i < v_size; ++i) {
- *result++ = scale * *vector++;
- }
-}
-
void LstmStep(
const float* input_ptr_batch, const int8_t* input_to_input_weights_ptr,
float input_to_input_weights_scale,
@@ -415,8 +407,9 @@ void LstmStep(
// For each batch and cell: update input gate.
if (!use_cifg) {
if (use_peephole && !is_cell_state_all_zeros) {
- VectorMultiply(cell_to_input_weights_ptr, n_cell,
- cell_to_input_weights_scale, recovered_cell_weights);
+ tensor_utils::VectorScalarMultiply(cell_to_input_weights_ptr, n_cell,
+ cell_to_input_weights_scale,
+ recovered_cell_weights);
tensor_utils::VectorBatchVectorCwiseProductAccumulate(
recovered_cell_weights, n_cell, cell_state_ptr, n_batch,
input_gate_scratch);
@@ -427,8 +420,9 @@ void LstmStep(
// For each batch and cell: update forget gate.
if (use_peephole && !is_cell_state_all_zeros) {
- VectorMultiply(cell_to_forget_weights_ptr, n_cell,
- cell_to_forget_weights_scale, recovered_cell_weights);
+ tensor_utils::VectorScalarMultiply(cell_to_forget_weights_ptr, n_cell,
+ cell_to_forget_weights_scale,
+ recovered_cell_weights);
tensor_utils::VectorBatchVectorCwiseProductAccumulate(
recovered_cell_weights, n_cell, cell_state_ptr, n_batch,
forget_gate_scratch);
@@ -459,8 +453,9 @@ void LstmStep(
tensor_utils::IsZeroVector(cell_state_ptr, n_batch * n_cell);
// For each batch and cell: update the output gate.
if (use_peephole && !is_cell_state_all_zeros) {
- VectorMultiply(cell_to_output_weights_ptr, n_cell,
- cell_to_output_weights_scale, recovered_cell_weights);
+ tensor_utils::VectorScalarMultiply(cell_to_output_weights_ptr, n_cell,
+ cell_to_output_weights_scale,
+ recovered_cell_weights);
tensor_utils::VectorBatchVectorCwiseProductAccumulate(
recovered_cell_weights, n_cell, cell_state_ptr, n_batch,
output_gate_scratch);
diff --git a/tensorflow/contrib/lite/kernels/internal/optimized/legacy_optimized_ops.h b/tensorflow/contrib/lite/kernels/internal/optimized/legacy_optimized_ops.h
index 6db41d7961..d5503073a7 100644
--- a/tensorflow/contrib/lite/kernels/internal/optimized/legacy_optimized_ops.h
+++ b/tensorflow/contrib/lite/kernels/internal/optimized/legacy_optimized_ops.h
@@ -55,6 +55,245 @@ inline void Relu(const float* input_data, const Dims<4>& input_dims,
DimsToShape(output_dims));
}
+// legacy, for compatibility with old checked-in code
+template <FusedActivationFunctionType Ac>
+void Add(const float* input1_data, const Dims<4>& input1_dims,
+ const float* input2_data, const Dims<4>& input2_dims,
+ float* output_data, const Dims<4>& output_dims) {
+ float output_activation_min, output_activation_max;
+ GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
+
+ tflite::ArithmeticParams op_params;
+ op_params.float_activation_min = output_activation_min;
+ op_params.float_activation_max = output_activation_max;
+ Add(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+template <FusedActivationFunctionType Ac>
+inline void Add(int left_shift, const uint8* input1_data,
+ const Dims<4>& input1_dims, int32 input1_offset,
+ int32 input1_multiplier, int input1_shift,
+ const uint8* input2_data, const Dims<4>& input2_dims,
+ int32 input2_offset, int32 input2_multiplier, int input2_shift,
+ int32 output_offset, int32 output_multiplier, int output_shift,
+ int32 output_activation_min, int32 output_activation_max,
+ uint8* output_data, const Dims<4>& output_dims) {
+ constexpr int kReverseShift = -1;
+ static_assert(Ac == FusedActivationFunctionType::kNone ||
+ Ac == FusedActivationFunctionType::kRelu ||
+ Ac == FusedActivationFunctionType::kRelu6 ||
+ Ac == FusedActivationFunctionType::kRelu1,
+ "");
+ TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ if (Ac == FusedActivationFunctionType::kNone) {
+ TFLITE_DCHECK_EQ(output_activation_min, 0);
+ TFLITE_DCHECK_EQ(output_activation_max, 255);
+ }
+
+ tflite::ArithmeticParams op_params;
+ op_params.left_shift = left_shift;
+ op_params.input1_offset = input1_offset;
+ op_params.input1_multiplier = input1_multiplier;
+ op_params.input1_shift = kReverseShift * input1_shift;
+ op_params.input2_offset = input2_offset;
+ op_params.input2_multiplier = input2_multiplier;
+ op_params.input2_shift = kReverseShift * input2_shift;
+ op_params.output_offset = output_offset;
+ op_params.output_multiplier = output_multiplier;
+ op_params.output_shift = kReverseShift * output_shift;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ Add(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+template <FusedActivationFunctionType Ac>
+void Add(const int32* input1_data, const Dims<4>& input1_dims,
+ const int32* input2_data, const Dims<4>& input2_dims,
+ int32* output_data, const Dims<4>& output_dims) {
+ gemmlowp::ScopedProfilingLabel label("Add/int32");
+ TFLITE_DCHECK(Ac == FusedActivationFunctionType::kNone);
+
+ tflite::ArithmeticParams op_params;
+ op_params.quantized_activation_min = std::numeric_limits<int32>::min();
+ op_params.quantized_activation_max = std::numeric_limits<int32>::max();
+ Add(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+template <typename T>
+void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
+ const T* input2_data, const Dims<4>& input2_dims,
+ T output_activation_min, T output_activation_max,
+ T* output_data, const Dims<4>& output_dims) {
+ tflite::ArithmeticParams op_params;
+ op_params.float_activation_min = output_activation_min;
+ op_params.float_activation_max = output_activation_max;
+ BroadcastAdd4DSlow(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data,
+ DimsToShape(output_dims), output_data);
+}
+
+template <FusedActivationFunctionType Ac>
+inline void BroadcastAdd(int left_shift, const uint8* input1_data,
+ const Dims<4>& input1_dims, int32 input1_offset,
+ int32 input1_multiplier, int input1_shift,
+ const uint8* input2_data, const Dims<4>& input2_dims,
+ int32 input2_offset, int32 input2_multiplier,
+ int input2_shift, int32 output_offset,
+ int32 output_multiplier, int output_shift,
+ int32 output_activation_min,
+ int32 output_activation_max, uint8* output_data,
+ const Dims<4>& output_dims) {
+ constexpr int kReverseShift = -1;
+ static_assert(Ac == FusedActivationFunctionType::kNone ||
+ Ac == FusedActivationFunctionType::kRelu ||
+ Ac == FusedActivationFunctionType::kRelu6 ||
+ Ac == FusedActivationFunctionType::kRelu1,
+ "");
+ TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ if (Ac == FusedActivationFunctionType::kNone) {
+ TFLITE_DCHECK_EQ(output_activation_min, 0);
+ TFLITE_DCHECK_EQ(output_activation_max, 255);
+ }
+
+ tflite::ArithmeticParams op_params;
+ op_params.left_shift = left_shift;
+ op_params.input1_offset = input1_offset;
+ op_params.input1_multiplier = input1_multiplier;
+ op_params.input1_shift = kReverseShift * input1_shift;
+ op_params.input2_offset = input2_offset;
+ op_params.input2_multiplier = input2_multiplier;
+ op_params.input2_shift = kReverseShift * input2_shift;
+ op_params.output_offset = output_offset;
+ op_params.output_multiplier = output_multiplier;
+ op_params.output_shift = kReverseShift * output_shift;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ BroadcastAdd4DSlow(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data,
+ DimsToShape(output_dims), output_data);
+}
+
+template <FusedActivationFunctionType Ac>
+inline void BroadcastAddFivefold(
+ int y0, int y1, int y2, int y3, int y4, int left_shift,
+ const uint8* input1_data, const Dims<4>& input1_dims, int32 input1_offset,
+ int32 input1_multiplier, int input1_shift, const uint8* input2_data,
+ const Dims<4>& input2_dims, int32 input2_offset, int32 input2_multiplier,
+ int input2_shift, int32 output_offset, int32 output_multiplier,
+ int output_shift, int32 output_activation_min, int32 output_activation_max,
+ uint8* output_data, const Dims<4>& output_dims) {
+ constexpr int kReverseShift = -1;
+ static_assert(Ac == FusedActivationFunctionType::kNone ||
+ Ac == FusedActivationFunctionType::kRelu ||
+ Ac == FusedActivationFunctionType::kRelu6 ||
+ Ac == FusedActivationFunctionType::kRelu1,
+ "");
+ TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ if (Ac == FusedActivationFunctionType::kNone) {
+ TFLITE_DCHECK_EQ(output_activation_min, 0);
+ TFLITE_DCHECK_EQ(output_activation_max, 255);
+ }
+ tflite::ArithmeticParams op_params;
+ op_params.broadcast_category =
+ tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
+ op_params.left_shift = left_shift;
+ op_params.input1_offset = input1_offset;
+ op_params.input1_multiplier = input1_multiplier;
+ op_params.input1_shift = kReverseShift * input1_shift;
+ op_params.input2_offset = input2_offset;
+ op_params.input2_multiplier = input2_multiplier;
+ op_params.input2_shift = kReverseShift * input2_shift;
+ op_params.output_offset = output_offset;
+ op_params.output_multiplier = output_multiplier;
+ op_params.output_shift = kReverseShift * output_shift;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ op_params.broadcast_shape[4] = y0;
+ op_params.broadcast_shape[3] = y1;
+ op_params.broadcast_shape[2] = y2;
+ op_params.broadcast_shape[1] = y3;
+ op_params.broadcast_shape[0] = y4;
+ BroadcastAddFivefold(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data,
+ DimsToShape(output_dims), output_data);
+}
+
+// legacy, for compatibility with old checked-in code
+template <FusedActivationFunctionType Ac, typename T>
+void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
+ const T* input2_data, const Dims<4>& input2_dims,
+ T* output_data, const Dims<4>& output_dims) {
+ T output_activation_min, output_activation_max;
+ GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
+
+ BroadcastAdd(input1_data, input1_dims, input2_data, input2_dims,
+ output_activation_min, output_activation_max, output_data,
+ output_dims);
+}
+
+template <FusedActivationFunctionType Ac>
+inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
+ int input1_shift, const int16* input2_data,
+ const Dims<4>& input2_dims, int input2_shift,
+ int16 output_activation_min, int16 output_activation_max,
+ int16* output_data, const Dims<4>& output_dims) {
+ constexpr int kReverseShift = -1;
+ static_assert(Ac == FusedActivationFunctionType::kNone ||
+ Ac == FusedActivationFunctionType::kRelu ||
+ Ac == FusedActivationFunctionType::kRelu6 ||
+ Ac == FusedActivationFunctionType::kRelu1,
+ "");
+ TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ if (Ac == FusedActivationFunctionType::kNone) {
+ TFLITE_DCHECK_EQ(output_activation_min, -32768);
+ TFLITE_DCHECK_EQ(output_activation_max, 32767);
+ }
+
+ tflite::ArithmeticParams op_params;
+ op_params.input1_shift = kReverseShift * input1_shift;
+ op_params.input2_shift = kReverseShift * input2_shift;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ Add(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+inline void Sub(const float* input1_data, const Dims<4>& input1_dims,
+ const float* input2_data, const Dims<4>& input2_dims,
+ float* output_data, const Dims<4>& output_dims) {
+ float output_activation_min, output_activation_max;
+ GetActivationMinMax(FusedActivationFunctionType::kNone,
+ &output_activation_min, &output_activation_max);
+ tflite::ArithmeticParams op_params;
+ op_params.float_activation_min = output_activation_min;
+ op_params.float_activation_max = output_activation_max;
+ Sub(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+template <typename T>
+void Sub(const T* input1_data, const Dims<4>& input1_dims, const T* input2_data,
+ const Dims<4>& input2_dims, T* output_data,
+ const Dims<4>& output_dims) {
+ T output_activation_min, output_activation_max;
+ GetActivationMinMax(FusedActivationFunctionType::kNone,
+ &output_activation_min, &output_activation_max);
+ tflite::ArithmeticParams op_params;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ Sub(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
inline void AveragePool(const float* input_data, const Dims<4>& input_dims,
int stride_width, int stride_height, int pad_width,
int pad_height, int kwidth, int kheight,
diff --git a/tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.cc b/tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.cc
index 8c57c987d7..420bc68b43 100644
--- a/tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.cc
+++ b/tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.cc
@@ -342,6 +342,77 @@ void NeonClipVector(const float* vector, int v_size, float abs_limit,
}
}
+void NeonVectorScalarMultiply(const int8_t* vector, const int v_size,
+ const float scale, float* result) {
+ // Here the assumption is that each buffer is 4-byte aligned.
+ const int kWeightsPerUint32 = 4;
+ TFLITE_CHECK_EQ((intptr_t)(&vector[0]) & (kWeightsPerUint32 - 1), 0);
+ // If v_size is not divisible by kWeightsPerNeonLane, we cannot use the main
+ // vectorized loop, and we need to process sequentially. postamble_start shows
+ // the start index where this should happen.
+ const int kWeightsPerNeonLane = 16;
+ const int postamble_start = v_size - (v_size & (kWeightsPerNeonLane - 1));
+
+ // Create a vector of 4 floats with the scale value.
+ const float32x4_t scale_f32x4 = vdupq_n_f32(scale);
+ int v = 0;
+ for (; v < postamble_start; v += kWeightsPerNeonLane) {
+ // Load int8 values, sixteen at a time.
+ const int8x16_t v_i8x16 = vld1q_s8(vector + v);
+ // Split it into two components of size eight.
+ const int8x8_t v0_i8x8 = vget_low_s8(v_i8x16);
+ const int8x8_t v1_i8x8 = vget_high_s8(v_i8x16);
+ // Convert both components to int16 first.
+ const int16x8_t v0_i16x8 = vmovl_s8(v0_i8x8);
+ const int16x8_t v1_i16x8 = vmovl_s8(v1_i8x8);
+ // Split each of them into two components each.
+ const int16x4_t v0_i16x4 = vget_low_s16(v0_i16x8);
+ const int16x4_t v1_i16x4 = vget_high_s16(v0_i16x8);
+ const int16x4_t v2_i16x4 = vget_low_s16(v1_i16x8);
+ const int16x4_t v3_i16x4 = vget_high_s16(v1_i16x8);
+ // Convert these to int32 and then to float.
+ float32x4_t v0_f32x4 = vcvtq_f32_s32(vmovl_s16(v0_i16x4));
+ float32x4_t v1_f32x4 = vcvtq_f32_s32(vmovl_s16(v1_i16x4));
+ float32x4_t v2_f32x4 = vcvtq_f32_s32(vmovl_s16(v2_i16x4));
+ float32x4_t v3_f32x4 = vcvtq_f32_s32(vmovl_s16(v3_i16x4));
+ // Vector multiply four floats at a time.
+ v0_f32x4 = vmulq_f32(v0_f32x4, scale_f32x4);
+ v1_f32x4 = vmulq_f32(v1_f32x4, scale_f32x4);
+ v2_f32x4 = vmulq_f32(v2_f32x4, scale_f32x4);
+ v3_f32x4 = vmulq_f32(v3_f32x4, scale_f32x4);
+ // Store the results.
+ vst1q_f32(result + v, v0_f32x4);
+ vst1q_f32(result + v + 4, v1_f32x4);
+ vst1q_f32(result + v + 8, v2_f32x4);
+ vst1q_f32(result + v + 12, v3_f32x4);
+ }
+
+ if (v_size - postamble_start >= (kWeightsPerNeonLane >> 1)) {
+ // Load eight int8 values, if there is at least eight remaining.
+ const int8x8_t v_i8x8 = vld1_s8(vector + v);
+ // Convert them to int16 first.
+ const int16x8_t v_i16x8 = vmovl_s8(v_i8x8);
+ // Split it into two components.
+ const int16x4_t v0_i16x4 = vget_low_s16(v_i16x8);
+ const int16x4_t v1_i16x4 = vget_high_s16(v_i16x8);
+ // Convert the components two floats.
+ float32x4_t v0_f32x4 = vcvtq_f32_s32(vmovl_s16(v0_i16x4));
+ float32x4_t v1_f32x4 = vcvtq_f32_s32(vmovl_s16(v1_i16x4));
+ // Vector multiply four floats at a time.
+ v0_f32x4 = vmulq_f32(v0_f32x4, scale_f32x4);
+ v1_f32x4 = vmulq_f32(v1_f32x4, scale_f32x4);
+ // Store the results.
+ vst1q_f32(result + v, v0_f32x4);
+ vst1q_f32(result + v + 4, v1_f32x4);
+ v += (kWeightsPerNeonLane >> 1);
+ }
+
+ // Postamble loop.
+ for (; v < v_size; v++) {
+ result[v] = scale * vector[v];
+ }
+}
+
void NeonSymmetricQuantizeFloats(const float* values, const int size,
int8_t* quantized_values, float* min,
float* max, float* scaling_factor) {
diff --git a/tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.h b/tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.h
index 7a5a8fc541..45c9f65b64 100644
--- a/tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.h
+++ b/tensorflow/contrib/lite/kernels/internal/optimized/neon_tensor_utils.h
@@ -105,6 +105,10 @@ bool IsZeroVector(const float* vector, int v_size) {
return NEON_OR_PORTABLE(IsZeroVector, vector, v_size);
}
+void VectorScalarMultiply(const int8_t* vector, int v_size, float scale,
+ float* result) {
+ NEON_OR_PORTABLE(VectorScalarMultiply, vector, v_size, scale, result);
+}
void ClipVector(const float* vector, int v_size, float abs_limit,
float* result) {
NEON_OR_PORTABLE(ClipVector, vector, v_size, abs_limit, result);
diff --git a/tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h b/tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h
index c857fdf699..78567d52ea 100644
--- a/tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h
+++ b/tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h
@@ -42,10 +42,12 @@ namespace optimized_ops {
// Unoptimized reference ops:
using reference_ops::ArgMax;
using reference_ops::ArgMinMax;
+using reference_ops::BroadcastAdd4DSlow;
using reference_ops::BroadcastGreater;
using reference_ops::BroadcastGreaterEqual;
using reference_ops::BroadcastLess;
using reference_ops::BroadcastLessEqual;
+using reference_ops::BroadcastSub4DSlow;
using reference_ops::Concatenation;
using reference_ops::DepthConcatenation;
using reference_ops::Dequantize;
@@ -217,98 +219,6 @@ SaturatingRoundingMultiplyByPOTParam(
SaturatingRoundingMultiplyByPOTParam(a.raw(), exponent));
}
-// DO NOT USE THIS STRUCT FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING ELEMENT-WISE
-// BROADCASTING.
-//
-// NdArrayDesc<N> describes the shape and memory layout of an N-dimensional
-// rectangular array of numbers.
-//
-// NdArrayDesc<N> is basically identical to Dims<N> defined in types.h.
-// However, as Dims<N> is to be deprecated, this class exists as an adaptor
-// to enable simple unoptimized implementations of element-wise broadcasting
-// operations.
-template <int N>
-struct NdArrayDesc {
- // The "extent" of each dimension. Indices along dimension d must be in the
- // half-open interval [0, extents[d]).
- int extents[N];
-
- // The number of *elements* (not bytes) between consecutive indices of each
- // dimension.
- int strides[N];
-};
-
-// DO NOT USE THIS FUNCTION FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING
-// ELEMENT-WISE BROADCASTING.
-//
-// Same as Offset(), except takes as NdArrayDesc<N> instead of Dims<N>.
-inline int SubscriptToIndex(const NdArrayDesc<4>& desc, int i0, int i1, int i2,
- int i3) {
- TFLITE_DCHECK(i0 >= 0 && i0 < desc.extents[0]);
- TFLITE_DCHECK(i1 >= 0 && i1 < desc.extents[1]);
- TFLITE_DCHECK(i2 >= 0 && i2 < desc.extents[2]);
- TFLITE_DCHECK(i3 >= 0 && i3 < desc.extents[3]);
- return i0 * desc.strides[0] + i1 * desc.strides[1] + i2 * desc.strides[2] +
- i3 * desc.strides[3];
-}
-
-// Given the dimensions of the operands for an element-wise binary broadcast,
-// adjusts them so that they can be directly iterated over with simple loops.
-// Returns the adjusted dims as instances of NdArrayDesc in 'desc0_out' and
-// 'desc1_out'. 'desc0_out' and 'desc1_out' cannot be nullptr.
-//
-// This function assumes that the two input shapes are compatible up to
-// broadcasting and the shorter one has already been prepended with 1s to be the
-// same length. E.g., if shape0 is (1, 16, 16, 64) and shape1 is (1, 64),
-// shape1 must already have been prepended to be (1, 1, 1, 64). Recall that
-// Dims<N> refer to shapes in reverse order. In this case, input0_dims will be
-// (64, 16, 16, 1) and input1_dims will be (64, 1, 1, 1).
-//
-// When two shapes are compatible up to broadcasting, for each dimension d,
-// the input extents are either equal, or one of them is 1.
-//
-// This function performs the following for each dimension d:
-// - If the extents are equal, then do nothing since the loop that walks over
-// both of the input arrays is correct.
-// - Otherwise, one (and only one) of the extents must be 1. Say extent0 is 1
-// and extent1 is e1. Then set extent0 to e1 and stride0 *to 0*. This allows
-// array0 to be referenced *at any index* in dimension d and still access the
-// same slice.
-template <int N>
-inline void NdArrayDescsForElementwiseBroadcast(const Dims<N>& input0_dims,
- const Dims<N>& input1_dims,
- NdArrayDesc<N>* desc0_out,
- NdArrayDesc<N>* desc1_out) {
- TFLITE_DCHECK(desc0_out != nullptr);
- TFLITE_DCHECK(desc1_out != nullptr);
-
- // Copy dims to desc.
- for (int i = 0; i < N; ++i) {
- desc0_out->extents[i] = input0_dims.sizes[i];
- desc0_out->strides[i] = input0_dims.strides[i];
- desc1_out->extents[i] = input1_dims.sizes[i];
- desc1_out->strides[i] = input1_dims.strides[i];
- }
-
- // Walk over each dimension. If the extents are equal do nothing.
- // Otherwise, set the desc with extent 1 to have extent equal to the other and
- // stride 0.
- for (int i = 0; i < N; ++i) {
- const int extent0 = ArraySize(input0_dims, i);
- const int extent1 = ArraySize(input1_dims, i);
- if (extent0 != extent1) {
- if (extent0 == 1) {
- desc0_out->strides[i] = 0;
- desc0_out->extents[i] = extent1;
- } else {
- TFLITE_DCHECK_EQ(extent1, 1);
- desc1_out->strides[i] = 0;
- desc1_out->extents[i] = extent0;
- }
- }
- }
-}
-
inline bool AreSameDims(const Dims<4>& dims1, const Dims<4>& dims2) {
for (int i = 0; i < 4; i++) {
if (dims1.sizes[i] != dims2.sizes[i]) {
@@ -2478,20 +2388,17 @@ inline void L2Normalization(const uint8* input_data,
}
}
-inline void Add(const float* input1_data, const Dims<4>& input1_dims,
- const float* input2_data, const Dims<4>& input2_dims,
- float output_activation_min, float output_activation_max,
- float* output_data, const Dims<4>& output_dims) {
+inline void Add(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const float* input1_data,
+ const RuntimeShape& input2_shape, const float* input2_data,
+ const RuntimeShape& output_shape, float* output_data) {
gemmlowp::ScopedProfilingLabel label("Add");
- TFLITE_DCHECK(IsPackedWithoutStrides(input1_dims));
- TFLITE_DCHECK(IsPackedWithoutStrides(input2_dims));
- TFLITE_DCHECK(IsPackedWithoutStrides(output_dims));
int i = 0;
- const int size = MatchingFlatSize(input1_dims, input2_dims, output_dims);
+ const int size = MatchingFlatSize(input1_shape, input2_shape, output_shape);
#ifdef USE_NEON
- const auto activation_min = vdupq_n_f32(output_activation_min);
- const auto activation_max = vdupq_n_f32(output_activation_max);
+ const auto activation_min = vdupq_n_f32(params.float_activation_min);
+ const auto activation_max = vdupq_n_f32(params.float_activation_max);
for (; i <= size - 16; i += 16) {
auto a10 = vld1q_f32(input1_data + i);
auto a11 = vld1q_f32(input1_data + i + 4);
@@ -2530,29 +2437,26 @@ inline void Add(const float* input1_data, const Dims<4>& input1_dims,
for (; i < size; i++) {
auto x = input1_data[i] + input2_data[i];
- output_data[i] = ActivationFunctionWithMinMax(x, output_activation_min,
- output_activation_max);
+ output_data[i] = ActivationFunctionWithMinMax(
+ x, params.float_activation_min, params.float_activation_max);
}
}
// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
-inline void AddElementwise(int size, int left_shift, const uint8* input1_data,
- int32 input1_offset, int32 input1_multiplier,
- int input1_shift, const uint8* input2_data,
- int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset,
- int32 output_multiplier, int output_shift,
- int32 output_activation_min,
- int32 output_activation_max, uint8* output_data) {
+inline void AddElementwise(int size, const ArithmeticParams& params,
+ const uint8* input1_data, const uint8* input2_data,
+ uint8* output_data) {
int i = 0;
- TFLITE_DCHECK_GT(input1_offset, -256);
- TFLITE_DCHECK_GT(input2_offset, -256);
- TFLITE_DCHECK_LT(input1_offset, 256);
- TFLITE_DCHECK_LT(input2_offset, 256);
+ TFLITE_DCHECK_GT(params.input1_offset, -256);
+ TFLITE_DCHECK_GT(params.input2_offset, -256);
+ TFLITE_DCHECK_LT(params.input1_offset, 256);
+ TFLITE_DCHECK_LT(params.input2_offset, 256);
#ifdef USE_NEON
- const auto output_activation_min_vector = vdup_n_u8(output_activation_min);
- const auto output_activation_max_vector = vdup_n_u8(output_activation_max);
+ const auto output_activation_min_vector =
+ vdup_n_u8(params.quantized_activation_min);
+ const auto output_activation_max_vector =
+ vdup_n_u8(params.quantized_activation_max);
for (; i <= size - 8; i += 8) {
const auto input1_val_original = vld1_u8(input1_data + i);
const auto input2_val_original = vld1_u8(input2_data + i);
@@ -2561,9 +2465,9 @@ inline void AddElementwise(int size, int left_shift, const uint8* input1_data,
const auto input2_val_s16 =
vreinterpretq_s16_u16(vmovl_u8(input2_val_original));
const auto input1_val =
- vaddq_s16(input1_val_s16, vdupq_n_s16(input1_offset));
+ vaddq_s16(input1_val_s16, vdupq_n_s16(params.input1_offset));
const auto input2_val =
- vaddq_s16(input2_val_s16, vdupq_n_s16(input2_offset));
+ vaddq_s16(input2_val_s16, vdupq_n_s16(params.input2_offset));
const auto input1_val_high = vget_high_s16(input1_val);
const auto input1_val_low = vget_low_s16(input1_val);
const auto input2_val_high = vget_high_s16(input2_val);
@@ -2572,32 +2476,32 @@ inline void AddElementwise(int size, int left_shift, const uint8* input1_data,
auto x12 = vmovl_s16(input1_val_high);
auto x21 = vmovl_s16(input2_val_low);
auto x22 = vmovl_s16(input2_val_high);
- const auto left_shift_dup = vdupq_n_s32(left_shift);
+ const auto left_shift_dup = vdupq_n_s32(params.left_shift);
x11 = vshlq_s32(x11, left_shift_dup);
x12 = vshlq_s32(x12, left_shift_dup);
x21 = vshlq_s32(x21, left_shift_dup);
x22 = vshlq_s32(x22, left_shift_dup);
- x11 = vqrdmulhq_n_s32(x11, input1_multiplier);
- x12 = vqrdmulhq_n_s32(x12, input1_multiplier);
- x21 = vqrdmulhq_n_s32(x21, input2_multiplier);
- x22 = vqrdmulhq_n_s32(x22, input2_multiplier);
- const auto input1_shift_dup = vdupq_n_s32(-input1_shift);
- const auto input2_shift_dup = vdupq_n_s32(-input2_shift);
+ x11 = vqrdmulhq_n_s32(x11, params.input1_multiplier);
+ x12 = vqrdmulhq_n_s32(x12, params.input1_multiplier);
+ x21 = vqrdmulhq_n_s32(x21, params.input2_multiplier);
+ x22 = vqrdmulhq_n_s32(x22, params.input2_multiplier);
+ const auto input1_shift_dup = vdupq_n_s32(params.input1_shift);
+ const auto input2_shift_dup = vdupq_n_s32(params.input2_shift);
x11 = vshlq_s32(x11, input1_shift_dup);
x12 = vshlq_s32(x12, input1_shift_dup);
x21 = vshlq_s32(x21, input2_shift_dup);
x22 = vshlq_s32(x22, input2_shift_dup);
auto s1 = vaddq_s32(x11, x21);
auto s2 = vaddq_s32(x12, x22);
- s1 = vqrdmulhq_n_s32(s1, output_multiplier);
- s2 = vqrdmulhq_n_s32(s2, output_multiplier);
+ s1 = vqrdmulhq_n_s32(s1, params.output_multiplier);
+ s2 = vqrdmulhq_n_s32(s2, params.output_multiplier);
using gemmlowp::RoundingDivideByPOT;
- s1 = RoundingDivideByPOT(s1, output_shift);
- s2 = RoundingDivideByPOT(s2, output_shift);
+ s1 = RoundingDivideByPOT(s1, -params.output_shift);
+ s2 = RoundingDivideByPOT(s2, -params.output_shift);
const auto s1_narrowed = vmovn_s32(s1);
const auto s2_narrowed = vmovn_s32(s2);
const auto s = vaddq_s16(vcombine_s16(s1_narrowed, s2_narrowed),
- vdupq_n_s16(output_offset));
+ vdupq_n_s16(params.output_offset));
const auto clamped =
vmax_u8(output_activation_min_vector,
vmin_u8(output_activation_max_vector, vqmovun_s16(s)));
@@ -2606,101 +2510,74 @@ inline void AddElementwise(int size, int left_shift, const uint8* input1_data,
#endif // NEON
for (; i < size; ++i) {
- const int32 input1_val = input1_offset + input1_data[i];
- const int32 input2_val = input2_offset + input2_data[i];
- const int32 shifted_input1_val = input1_val * (1 << left_shift);
- const int32 shifted_input2_val = input2_val * (1 << left_shift);
+ const int32 input1_val = params.input1_offset + input1_data[i];
+ const int32 input2_val = params.input2_offset + input2_data[i];
+ const int32 shifted_input1_val = input1_val * (1 << params.left_shift);
+ const int32 shifted_input2_val = input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, input1_multiplier,
- kReverseShift * input1_shift);
+ shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32 scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, input2_multiplier,
- kReverseShift * input2_shift);
+ shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32 raw_sum = scaled_input1_val + scaled_input2_val;
const int32 raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sum, output_multiplier, kReverseShift * output_shift) +
- output_offset;
- const int32 clamped_output = std::min(
- output_activation_max, std::max(output_activation_min, raw_output));
+ raw_sum, params.output_multiplier, params.output_shift) +
+ params.output_offset;
+ const int32 clamped_output =
+ std::min(params.quantized_activation_max,
+ std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<uint8>(clamped_output);
}
}
-// legacy, for compatibility with old checked-in code
-template <FusedActivationFunctionType Ac>
-void Add(const float* input1_data, const Dims<4>& input1_dims,
- const float* input2_data, const Dims<4>& input2_dims,
- float* output_data, const Dims<4>& output_dims) {
- float output_activation_min, output_activation_max;
- GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
-
- Add(input1_data, input1_dims, input2_data, input2_dims, output_activation_min,
- output_activation_max, output_data, output_dims);
-}
-
-template <FusedActivationFunctionType Ac>
-inline void Add(int left_shift, const uint8* input1_data,
- const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift,
- const uint8* input2_data, const Dims<4>& input2_dims,
- int32 input2_offset, int32 input2_multiplier, int input2_shift,
- int32 output_offset, int32 output_multiplier, int output_shift,
- int32 output_activation_min, int32 output_activation_max,
- uint8* output_data, const Dims<4>& output_dims) {
- static_assert(Ac == FusedActivationFunctionType::kNone ||
- Ac == FusedActivationFunctionType::kRelu ||
- Ac == FusedActivationFunctionType::kRelu6 ||
- Ac == FusedActivationFunctionType::kRelu1,
- "");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- if (Ac == FusedActivationFunctionType::kNone) {
- TFLITE_DCHECK_EQ(output_activation_min, 0);
- TFLITE_DCHECK_EQ(output_activation_max, 255);
- }
+inline void Add(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const uint8* input1_data,
+ const RuntimeShape& input2_shape, const uint8* input2_data,
+ const RuntimeShape& output_shape, uint8* output_data) {
+ TFLITE_DCHECK_LE(params.quantized_activation_min,
+ params.quantized_activation_max);
gemmlowp::ScopedProfilingLabel label("Add/8bit");
- const int flat_size = MatchingFlatSize(input1_dims, input2_dims, output_dims);
- TFLITE_DCHECK(IsPackedWithoutStrides(input1_dims));
- TFLITE_DCHECK(IsPackedWithoutStrides(input2_dims));
- TFLITE_DCHECK(IsPackedWithoutStrides(output_dims));
-
- TFLITE_DCHECK_GT(input1_offset, -256);
- TFLITE_DCHECK_GT(input2_offset, -256);
- TFLITE_DCHECK_LT(input1_offset, 256);
- TFLITE_DCHECK_LT(input2_offset, 256);
- AddElementwise(flat_size, left_shift, input1_data, input1_offset,
- input1_multiplier, input1_shift, input2_data, input2_offset,
- input2_multiplier, input2_shift, output_offset,
- output_multiplier, output_shift, output_activation_min,
- output_activation_max, output_data);
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, output_shape);
+
+ TFLITE_DCHECK_GT(params.input1_offset, -256);
+ TFLITE_DCHECK_GT(params.input2_offset, -256);
+ TFLITE_DCHECK_LT(params.input1_offset, 256);
+ TFLITE_DCHECK_LT(params.input2_offset, 256);
+ AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}
-inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
- int input1_shift, const int16* input2_data,
- const Dims<4>& input2_dims, int input2_shift,
- int16 output_activation_min, int16 output_activation_max,
- int16* output_data, const Dims<4>& output_dims) {
+inline void Add(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const int16* input1_data,
+ const RuntimeShape& input2_shape, const int16* input2_data,
+ const RuntimeShape& output_shape, int16* output_data) {
gemmlowp::ScopedProfilingLabel label("Add/Int16");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ TFLITE_DCHECK_LE(params.quantized_activation_min,
+ params.quantized_activation_max);
- const int flat_size = MatchingFlatSize(output_dims, input1_dims, input2_dims);
+ const int input1_shift = params.input1_shift;
+ const int flat_size =
+ MatchingFlatSize(output_shape, input1_shape, input2_shape);
+ const int16 output_activation_min = params.quantized_activation_min;
+ const int16 output_activation_max = params.quantized_activation_max;
- TFLITE_DCHECK(input1_shift == 0 || input2_shift == 0);
- TFLITE_DCHECK_GE(input1_shift, 0);
- TFLITE_DCHECK_GE(input2_shift, 0);
+ TFLITE_DCHECK(input1_shift == 0 || params.input2_shift == 0);
+ TFLITE_DCHECK_LE(input1_shift, 0);
+ TFLITE_DCHECK_LE(params.input2_shift, 0);
const int16* not_shift_input = input1_shift == 0 ? input1_data : input2_data;
const int16* shift_input = input1_shift == 0 ? input2_data : input1_data;
- const int input_shift = input1_shift == 0 ? input2_shift : input1_shift;
+ const int input_right_shift =
+ input1_shift == 0 ? -params.input2_shift : -input1_shift;
for (int i = 0; i < flat_size; i++) {
// F0 uses 0 integer bits, range [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
F0 input_ready_scaled = F0::FromRaw(not_shift_input[i]);
- F0 scaled_input =
- F0::FromRaw(gemmlowp::RoundingDivideByPOT(shift_input[i], input_shift));
+ F0 scaled_input = F0::FromRaw(
+ gemmlowp::RoundingDivideByPOT(shift_input[i], input_right_shift));
F0 result = gemmlowp::SaturatingAdd(scaled_input, input_ready_scaled);
const int16 raw_output = result.raw();
const int16 clamped_output = std::min(
@@ -2709,195 +2586,59 @@ inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
}
}
-inline void Add(const int32* input1_data, const Dims<4>& input1_dims,
- const int32* input2_data, const Dims<4>& input2_dims,
- int32 output_activation_min, int32 output_activation_max,
- int32* output_data, const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("Add/int32");
-
- const int flat_size = MatchingFlatSize(input1_dims, input2_dims, output_dims);
- for (int i = 0; i < flat_size; ++i) {
- output_data[i] = ActivationFunctionWithMinMax(
- input1_data[i] + input2_data[i], output_activation_min,
- output_activation_max);
- }
-}
-
-template <FusedActivationFunctionType Ac>
-inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
- int input1_shift, const int16* input2_data,
- const Dims<4>& input2_dims, int input2_shift,
- int16 output_activation_min, int16 output_activation_max,
- int16* output_data, const Dims<4>& output_dims) {
- static_assert(Ac == FusedActivationFunctionType::kNone ||
- Ac == FusedActivationFunctionType::kRelu ||
- Ac == FusedActivationFunctionType::kRelu6 ||
- Ac == FusedActivationFunctionType::kRelu1,
- "");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- if (Ac == FusedActivationFunctionType::kNone) {
- TFLITE_DCHECK_EQ(output_activation_min, -32768);
- TFLITE_DCHECK_EQ(output_activation_max, 32767);
- }
-
- Add(input1_data, input1_dims, input1_shift, input2_data, input2_dims,
- input2_shift, output_activation_min, output_activation_max, output_data,
- output_dims);
-}
-
-template <FusedActivationFunctionType Ac>
-void Add(const int32* input1_data, const Dims<4>& input1_dims,
- const int32* input2_data, const Dims<4>& input2_dims,
- int32* output_data, const Dims<4>& output_dims) {
+inline void Add(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const int32* input1_data,
+ const RuntimeShape& input2_shape, const int32* input2_data,
+ const RuntimeShape& output_shape, int32* output_data) {
gemmlowp::ScopedProfilingLabel label("Add/int32");
- TFLITE_DCHECK(Ac == FusedActivationFunctionType::kNone);
- auto input1_map = MapAsVector(input1_data, input1_dims);
- auto input2_map = MapAsVector(input2_data, input2_dims);
- auto output_map = MapAsVector(output_data, output_dims);
- if (AreSameDims(input1_dims, input2_dims)) {
+ auto input1_map = MapAsVector(input1_data, input1_shape);
+ auto input2_map = MapAsVector(input2_data, input2_shape);
+ auto output_map = MapAsVector(output_data, output_shape);
+ if (input1_shape == input2_shape) {
output_map.array() = input1_map.array() + input2_map.array();
- } else if (FlatSize(input2_dims) == 1) {
+ } else if (input2_shape.FlatSize() == 1) {
auto scalar = input2_data[0];
output_map.array() = input1_map.array() + scalar;
- } else if (FlatSize(input1_dims) == 1) {
+ } else if (input1_shape.FlatSize() == 1) {
auto scalar = input1_data[0];
output_map.array() = scalar + input2_map.array();
} else {
// Should not come here.
TFLITE_DCHECK(false);
}
+ output_map = output_map.cwiseMax(params.quantized_activation_min);
+ output_map = output_map.cwiseMin(params.quantized_activation_max);
}
-// TODO(jiawen): We can implement BroadcastAdd on buffers of arbitrary
-// dimensionality if the runtime code does a single loop over one dimension
-// that handles broadcasting as the base case. The code generator would then
-// generate max(D1, D2) nested for loops.
-// TODO(benoitjacob): BroadcastAdd is intentionally duplicated from
-// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
-// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
-// reference_ops.h.
-template <typename T>
-void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
- const T* input2_data, const Dims<4>& input2_dims,
- T output_activation_min, T output_activation_max,
- T* output_data, const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastAdd");
-
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
-
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
- output_data[Offset(output_dims, c, x, y, b)] =
- ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, c, x, y, b)] +
- input2_data[SubscriptToIndex(desc2, c, x, y, b)],
- output_activation_min, output_activation_max);
- }
- }
- }
- }
-}
-
-// legacy, for compatibility with old checked-in code
-template <FusedActivationFunctionType Ac, typename T>
-void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
- const T* input2_data, const Dims<4>& input2_dims,
- T* output_data, const Dims<4>& output_dims) {
- T output_activation_min, output_activation_max;
- GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
-
- BroadcastAdd(input1_data, input1_dims, input2_data, input2_dims,
- output_activation_min, output_activation_max, output_data,
- output_dims);
-}
-
-inline void BroadcastAdd(int left_shift, const uint8* input1_data,
- const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift,
- const uint8* input2_data, const Dims<4>& input2_dims,
- int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset,
- int32 output_multiplier, int output_shift,
- int32 output_activation_min,
- int32 output_activation_max, uint8* output_data,
- const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastAddGeneric/8bit");
-
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
-
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
- const int32 input1_val =
- input1_offset + input1_data[SubscriptToIndex(desc1, c, x, y, b)];
- const int32 input2_val =
- input2_offset + input2_data[SubscriptToIndex(desc2, c, x, y, b)];
- const int32 shifted_input1_val = input1_val * (1 << left_shift);
- const int32 shifted_input2_val = input2_val * (1 << left_shift);
- const int32 scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, input1_multiplier,
- kReverseShift * input1_shift);
- const int32 scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, input2_multiplier,
- kReverseShift * input2_shift);
- const int32 raw_sum = scaled_input1_val + scaled_input2_val;
- const int32 raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sum, output_multiplier, kReverseShift * output_shift) +
- output_offset;
- const int32 clamped_output =
- std::min(output_activation_max,
- std::max(output_activation_min, raw_output));
- output_data[Offset(output_dims, c, x, y, b)] =
- static_cast<uint8>(clamped_output);
- }
- }
- }
- }
-}
-
-inline void BroadcastAddFivefold(
- int y0, int y1, int y2, int y3, int y4, int left_shift,
- const uint8* input1_data, const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift, const uint8* input2_data,
- const Dims<4>& input2_dims, int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset, int32 output_multiplier,
- int output_shift, int32 output_activation_min, int32 output_activation_max,
- uint8* output_data, const Dims<4>& output_dims) {
+inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
+ const RuntimeShape& unswitched_input1_shape,
+ const uint8* unswitched_input1_data,
+ const RuntimeShape& unswitched_input2_shape,
+ const uint8* unswitched_input2_data,
+ const RuntimeShape& output_shape,
+ uint8* output_data) {
gemmlowp::ScopedProfilingLabel label("BroadcastAddFivefold/8bit");
+ ArithmeticParams switched_params = unswitched_params;
+ switched_params.input1_offset = unswitched_params.input2_offset;
+ switched_params.input1_multiplier = unswitched_params.input2_multiplier;
+ switched_params.input1_shift = unswitched_params.input2_shift;
+ switched_params.input2_offset = unswitched_params.input1_offset;
+ switched_params.input2_multiplier = unswitched_params.input1_multiplier;
+ switched_params.input2_shift = unswitched_params.input1_shift;
+
+ const bool use_unswitched =
+ unswitched_params.broadcast_category ==
+ tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
+
+ const ArithmeticParams& params =
+ use_unswitched ? unswitched_params : switched_params;
+ const uint8* input1_data =
+ use_unswitched ? unswitched_input1_data : unswitched_input2_data;
+ const uint8* input2_data =
+ use_unswitched ? unswitched_input2_data : unswitched_input1_data;
+
// Fivefold nested loops. The second input resets its position for each
// iteration of the second loop. The first input resets its position at the
// beginning of the fourth loop. The innermost loop is an elementwise add of
@@ -2905,82 +2646,29 @@ inline void BroadcastAddFivefold(
uint8* output_data_ptr = output_data;
const uint8* input1_data_ptr = input1_data;
const uint8* input2_data_reset = input2_data;
- for (int i4 = 0; i4 < y4; ++i4) {
+ int y0 = params.broadcast_shape[0];
+ int y1 = params.broadcast_shape[1];
+ int y2 = params.broadcast_shape[2];
+ int y3 = params.broadcast_shape[3];
+ int y4 = params.broadcast_shape[4];
+ for (int i0 = 0; i0 < y0; ++i0) {
const uint8* input2_data_ptr;
- for (int i3 = 0; i3 < y3; ++i3) {
+ for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
- for (int i1 = 0; i1 < y1; ++i1) {
- AddElementwise(
- y0, left_shift, input1_data_ptr, input1_offset, input1_multiplier,
- input1_shift, input2_data_ptr, input2_offset, input2_multiplier,
- input2_shift, output_offset, output_multiplier, output_shift,
- output_activation_min, output_activation_max, output_data_ptr);
- input2_data_ptr += y0;
- output_data_ptr += y0;
+ for (int i3 = 0; i3 < y3; ++i3) {
+ AddElementwise(y4, params, input1_data_ptr, input2_data_ptr,
+ output_data_ptr);
+ input2_data_ptr += y4;
+ output_data_ptr += y4;
}
- input1_data_ptr += y0;
+ input1_data_ptr += y4;
}
}
input2_data_reset = input2_data_ptr;
}
}
-template <FusedActivationFunctionType Ac>
-inline void BroadcastAdd(int left_shift, const uint8* input1_data,
- const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift,
- const uint8* input2_data, const Dims<4>& input2_dims,
- int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset,
- int32 output_multiplier, int output_shift,
- int32 output_activation_min,
- int32 output_activation_max, uint8* output_data,
- const Dims<4>& output_dims) {
- static_assert(Ac == FusedActivationFunctionType::kNone ||
- Ac == FusedActivationFunctionType::kRelu ||
- Ac == FusedActivationFunctionType::kRelu6 ||
- Ac == FusedActivationFunctionType::kRelu1,
- "");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- if (Ac == FusedActivationFunctionType::kNone) {
- TFLITE_DCHECK_EQ(output_activation_min, 0);
- TFLITE_DCHECK_EQ(output_activation_max, 255);
- }
- BroadcastAdd(left_shift, input1_data, input1_dims, input1_offset,
- input1_multiplier, input1_shift, input2_data, input2_dims,
- input2_offset, input2_multiplier, input2_shift, output_offset,
- output_multiplier, output_shift, output_activation_min,
- output_activation_max, output_data, output_dims);
-}
-
-template <FusedActivationFunctionType Ac>
-inline void BroadcastAddFivefold(
- int y0, int y1, int y2, int y3, int y4, int left_shift,
- const uint8* input1_data, const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift, const uint8* input2_data,
- const Dims<4>& input2_dims, int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset, int32 output_multiplier,
- int output_shift, int32 output_activation_min, int32 output_activation_max,
- uint8* output_data, const Dims<4>& output_dims) {
- static_assert(Ac == FusedActivationFunctionType::kNone ||
- Ac == FusedActivationFunctionType::kRelu ||
- Ac == FusedActivationFunctionType::kRelu6 ||
- Ac == FusedActivationFunctionType::kRelu1,
- "");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- if (Ac == FusedActivationFunctionType::kNone) {
- TFLITE_DCHECK_EQ(output_activation_min, 0);
- TFLITE_DCHECK_EQ(output_activation_max, 255);
- }
- BroadcastAddFivefold(y0, y1, y2, y3, y4, left_shift, input1_data, input1_dims,
- input1_offset, input1_multiplier, input1_shift,
- input2_data, input2_dims, input2_offset,
- input2_multiplier, input2_shift, output_offset,
- output_multiplier, output_shift, output_activation_min,
- output_activation_max, output_data, output_dims);
-}
-
inline void Mul(const float* input1_data, const Dims<4>& input1_dims,
const float* input2_data, const Dims<4>& input2_dims,
float output_activation_min, float output_activation_max,
@@ -3305,122 +2993,78 @@ void BroadcastDiv(const T* input1_data, const Dims<4>& input1_dims,
}
// TODO(aselle): This is not actually optimized yet.
-inline void Sub(const float* input1_data, const Dims<4>& input1_dims,
- const float* input2_data, const Dims<4>& input2_dims,
- float output_activation_min, float output_activation_max,
- float* output_data, const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("Sub");
- const int flat_size = MatchingFlatSize(input1_dims, input2_dims, output_dims);
+inline void SubNonBroadcast(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const float* input1_data,
+ const RuntimeShape& input2_shape,
+ const float* input2_data,
+ const RuntimeShape& output_shape,
+ float* output_data) {
+ gemmlowp::ScopedProfilingLabel label("SubNonBroadcast");
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
- input1_data[i] - input2_data[i], output_activation_min,
- output_activation_max);
+ input1_data[i] - input2_data[i], params.float_activation_min,
+ params.float_activation_max);
}
}
-// TODO(jiawen): We can implement BroadcastSub on buffers of arbitrary
-// dimensionality if the runtime code does a single loop over one dimension
-// that handles broadcasting as the base case. The code generator would then
-// generate max(D1, D2) nested for loops.
-// TODO(benoitjacob): BroadcastSub is intentionally duplicated from
-// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
-// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
-// reference_ops.h.
-template <typename T>
-void BroadcastSub(const T* input1_data, const Dims<4>& input1_dims,
- const T* input2_data, const Dims<4>& input2_dims,
- T output_activation_min, T output_activation_max,
- T* output_data, const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastSub");
-
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
-
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
- output_data[Offset(output_dims, c, x, y, b)] =
- ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, c, x, y, b)] -
- input2_data[SubscriptToIndex(desc2, c, x, y, b)],
- output_activation_min, output_activation_max);
- }
- }
- }
+inline void SubWithActivation(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const int32* input1_data,
+ const RuntimeShape& input2_shape,
+ const int32* input2_data,
+ const RuntimeShape& output_shape,
+ int32* output_data) {
+ gemmlowp::ScopedProfilingLabel label("SubWithActivation/int32");
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, input2_shape);
+ for (int i = 0; i < flat_size; ++i) {
+ output_data[i] = ActivationFunctionWithMinMax(
+ input1_data[i] - input2_data[i], params.quantized_activation_min,
+ params.quantized_activation_max);
}
}
-inline void BroadcastSub(int left_shift, const uint8* input1_data,
- const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift,
- const uint8* input2_data, const Dims<4>& input2_dims,
- int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset,
- int32 output_multiplier, int output_shift,
- int32 output_activation_min,
- int32 output_activation_max, uint8* output_data,
- const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastSub/8bit");
+inline void SubWithActivation(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const float* input1_data,
+ const RuntimeShape& input2_shape,
+ const float* input2_data,
+ const RuntimeShape& output_shape,
+ float* output_data) {
+ gemmlowp::ScopedProfilingLabel label("SubWithActivation/float");
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, input2_shape);
+ for (int i = 0; i < flat_size; ++i) {
+ output_data[i] = ActivationFunctionWithMinMax(
+ input1_data[i] - input2_data[i], params.float_activation_min,
+ params.float_activation_max);
+ }
+}
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
+template <typename T>
+void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape,
+ const T* input1_data, const RuntimeShape& input2_shape,
+ const T* input2_data, const RuntimeShape& output_shape,
+ T* output_data) {
+ gemmlowp::ScopedProfilingLabel label("Sub");
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
- const int32 input1_val =
- input1_offset + input1_data[SubscriptToIndex(desc1, c, x, y, b)];
- const int32 input2_val =
- input2_offset + input2_data[SubscriptToIndex(desc2, c, x, y, b)];
- const int32 shifted_input1_val = input1_val * (1 << left_shift);
- const int32 shifted_input2_val = input2_val * (1 << left_shift);
- const int32 scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, input1_multiplier,
- kReverseShift * input1_shift);
- const int32 scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, input2_multiplier,
- kReverseShift * input2_shift);
- const int32 raw_sub = scaled_input1_val - scaled_input2_val;
- const int32 raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sub, output_multiplier, kReverseShift * output_shift) +
- output_offset;
- const int32 clamped_output =
- std::min(output_activation_max,
- std::max(output_activation_min, raw_output));
- output_data[Offset(output_dims, c, x, y, b)] =
- static_cast<uint8>(clamped_output);
- }
- }
- }
+ auto input1_map = MapAsVector(input1_data, input1_shape);
+ auto input2_map = MapAsVector(input2_data, input2_shape);
+ auto output_map = MapAsVector(output_data, output_shape);
+ if (input1_shape == input2_shape) {
+ output_map.array() = input1_map.array() - input2_map.array();
+ } else if (input1_shape.FlatSize() == 1) {
+ auto scalar = input1_data[0];
+ output_map.array() = scalar - input2_map.array();
+ } else if (input2_shape.FlatSize() == 1) {
+ auto scalar = input2_data[0];
+ output_map.array() = input1_map.array() - scalar;
+ } else {
+ BroadcastSub4DSlow(params, input1_shape, input1_data, input2_shape,
+ input2_data, output_shape, output_data);
}
}
@@ -5863,63 +5507,6 @@ inline void Slice(const T* input_data, const Dims<4>& input_dims,
}
template <typename T>
-void GenericBroadcastSub(const T* input1_data, const Dims<4>& input1_dims,
- const T* input2_data, const Dims<4>& input2_dims,
- T* output_data, const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("GenericBroadcastSub");
-
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
-
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
- output_data[Offset(output_dims, c, x, y, b)] =
- input1_data[SubscriptToIndex(desc1, c, x, y, b)] -
- input2_data[SubscriptToIndex(desc2, c, x, y, b)];
- }
- }
- }
- }
-}
-
-template <typename T>
-void Sub(const T* input1_data, const Dims<4>& input1_dims, const T* input2_data,
- const Dims<4>& input2_dims, T* output_data,
- const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("Sub");
-
- auto input1_map = MapAsVector(input1_data, input1_dims);
- auto input2_map = MapAsVector(input2_data, input2_dims);
- auto output_map = MapAsVector(output_data, output_dims);
- if (AreSameDims(input1_dims, input2_dims)) {
- output_map.array() = input1_map.array() - input2_map.array();
- } else if (FlatSize(input1_dims) == 1) {
- auto scalar = input1_data[0];
- output_map.array() = scalar - input2_map.array();
- } else if (FlatSize(input2_dims) == 1) {
- auto scalar = input2_data[0];
- output_map.array() = input1_map.array() - scalar;
- } else {
- GenericBroadcastSub(input1_data, input1_dims, input2_data, input2_dims,
- output_data, output_dims);
- }
-}
-
-template <typename T>
void TensorFlowMinimum(const T* input1_data, const Dims<4>& input1_dims,
const T* input2_data, T* output_data,
const Dims<4>& output_dims) {
diff --git a/tensorflow/contrib/lite/kernels/internal/optimized/tensor_utils_impl.h b/tensorflow/contrib/lite/kernels/internal/optimized/tensor_utils_impl.h
index f14667090f..db7926df9a 100644
--- a/tensorflow/contrib/lite/kernels/internal/optimized/tensor_utils_impl.h
+++ b/tensorflow/contrib/lite/kernels/internal/optimized/tensor_utils_impl.h
@@ -124,6 +124,12 @@ void PortableCopyVector(const float* vector, int v_size, float* result);
// Fill vector with 0.f.
void PortableZeroVector(float* vector, int v_size);
+// Multiply all elements of vector with a scalar.
+void PortableVectorScalarMultiply(const int8_t* vector, int v_size, float scale,
+ float* result);
+void NeonVectorScalarMultiply(const int8_t* vector, int v_size, float scale,
+ float* result);
+
// Limit a float input f between +abs_limit and -abs_limit.
float PortableClip(float f, float abs_limit);
diff --git a/tensorflow/contrib/lite/kernels/internal/quantization_util.h b/tensorflow/contrib/lite/kernels/internal/quantization_util.h
index 525857a2e6..9b3f1823dc 100644
--- a/tensorflow/contrib/lite/kernels/internal/quantization_util.h
+++ b/tensorflow/contrib/lite/kernels/internal/quantization_util.h
@@ -28,8 +28,9 @@ namespace tflite {
// Given the min and max values of a float array, return
// reasonable quantization parameters to use for this array.
template <typename T>
-QuantizationParams ChooseQuantizationParams(double rmin, double rmax) {
- const T qmin = std::numeric_limits<T>::min();
+QuantizationParams ChooseQuantizationParams(double rmin, double rmax,
+ bool narrow_range) {
+ const T qmin = std::numeric_limits<T>::min() + (narrow_range ? 1 : 0);
const T qmax = std::numeric_limits<T>::max();
const double qmin_double = qmin;
const double qmax_double = qmax;
@@ -97,6 +98,11 @@ QuantizationParams ChooseQuantizationParams(double rmin, double rmax) {
return quantization_params;
}
+template <typename T>
+QuantizationParams ChooseQuantizationParams(double rmin, double rmax) {
+ return ChooseQuantizationParams<T>(rmin, rmax, false);
+}
+
// Converts a floating-point number to an integer. For all inputs x where
// static_cast<IntOut>(x) is legal according to the C++ standard, the result
// is identical to that cast (i.e. the result is x with its fractional part
diff --git a/tensorflow/contrib/lite/kernels/internal/reference/legacy_reference_ops.h b/tensorflow/contrib/lite/kernels/internal/reference/legacy_reference_ops.h
index f715d34bc1..bcf5e4e4f6 100644
--- a/tensorflow/contrib/lite/kernels/internal/reference/legacy_reference_ops.h
+++ b/tensorflow/contrib/lite/kernels/internal/reference/legacy_reference_ops.h
@@ -63,6 +63,240 @@ inline void Relu6(const float* input_data, const Dims<4>& input_dims,
DimsToShape(output_dims));
}
+template <FusedActivationFunctionType Ac>
+inline void Add(int left_shift, const uint8* input1_data,
+ const Dims<4>& input1_dims, int32 input1_offset,
+ int32 input1_multiplier, int input1_shift,
+ const uint8* input2_data, const Dims<4>& input2_dims,
+ int32 input2_offset, int32 input2_multiplier, int input2_shift,
+ int32 output_offset, int32 output_multiplier, int output_shift,
+ int32 output_activation_min, int32 output_activation_max,
+ uint8* output_data, const Dims<4>& output_dims) {
+ constexpr int kReverseShift = -1;
+ static_assert(Ac == FusedActivationFunctionType::kNone ||
+ Ac == FusedActivationFunctionType::kRelu ||
+ Ac == FusedActivationFunctionType::kRelu6 ||
+ Ac == FusedActivationFunctionType::kRelu1,
+ "");
+ TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ if (Ac == FusedActivationFunctionType::kNone) {
+ TFLITE_DCHECK_EQ(output_activation_min, 0);
+ TFLITE_DCHECK_EQ(output_activation_max, 255);
+ }
+
+ tflite::ArithmeticParams op_params;
+ op_params.left_shift = left_shift;
+ op_params.input1_offset = input1_offset;
+ op_params.input1_multiplier = input1_multiplier;
+ op_params.input1_shift = kReverseShift * input1_shift;
+ op_params.input2_offset = input2_offset;
+ op_params.input2_multiplier = input2_multiplier;
+ op_params.input2_shift = kReverseShift * input2_shift;
+ op_params.output_offset = output_offset;
+ op_params.output_multiplier = output_multiplier;
+ op_params.output_shift = kReverseShift * output_shift;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ Add(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+template <FusedActivationFunctionType Ac>
+void Add(const int32* input1_data, const Dims<4>& input1_dims,
+ const int32* input2_data, const Dims<4>& input2_dims,
+ int32* output_data, const Dims<4>& output_dims) {
+ gemmlowp::ScopedProfilingLabel label("Add/int32");
+ TFLITE_DCHECK(Ac == FusedActivationFunctionType::kNone);
+
+ tflite::ArithmeticParams op_params;
+ op_params.quantized_activation_min = std::numeric_limits<int32>::min();
+ op_params.quantized_activation_max = std::numeric_limits<int32>::max();
+ Add(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+template <FusedActivationFunctionType Ac>
+inline void BroadcastAdd(int left_shift, const uint8* input1_data,
+ const Dims<4>& input1_dims, int32 input1_offset,
+ int32 input1_multiplier, int input1_shift,
+ const uint8* input2_data, const Dims<4>& input2_dims,
+ int32 input2_offset, int32 input2_multiplier,
+ int input2_shift, int32 output_offset,
+ int32 output_multiplier, int output_shift,
+ int32 output_activation_min,
+ int32 output_activation_max, uint8* output_data,
+ const Dims<4>& output_dims) {
+ constexpr int kReverseShift = -1;
+ static_assert(Ac == FusedActivationFunctionType::kNone ||
+ Ac == FusedActivationFunctionType::kRelu ||
+ Ac == FusedActivationFunctionType::kRelu6 ||
+ Ac == FusedActivationFunctionType::kRelu1,
+ "");
+ TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ if (Ac == FusedActivationFunctionType::kNone) {
+ TFLITE_DCHECK_EQ(output_activation_min, 0);
+ TFLITE_DCHECK_EQ(output_activation_max, 255);
+ }
+
+ tflite::ArithmeticParams op_params;
+ op_params.left_shift = left_shift;
+ op_params.input1_offset = input1_offset;
+ op_params.input1_multiplier = input1_multiplier;
+ op_params.input1_shift = kReverseShift * input1_shift;
+ op_params.input2_offset = input2_offset;
+ op_params.input2_multiplier = input2_multiplier;
+ op_params.input2_shift = kReverseShift * input2_shift;
+ op_params.output_offset = output_offset;
+ op_params.output_multiplier = output_multiplier;
+ op_params.output_shift = kReverseShift * output_shift;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ BroadcastAdd4DSlow(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data,
+ DimsToShape(output_dims), output_data);
+}
+
+template <FusedActivationFunctionType Ac>
+void Add(const float* input1_data, const Dims<4>& input1_dims,
+ const float* input2_data, const Dims<4>& input2_dims,
+ float* output_data, const Dims<4>& output_dims) {
+ float output_activation_min, output_activation_max;
+ GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
+
+ tflite::ArithmeticParams op_params;
+ op_params.float_activation_min = output_activation_min;
+ op_params.float_activation_max = output_activation_max;
+ Add(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+template <typename T>
+void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
+ const T* input2_data, const Dims<4>& input2_dims,
+ T output_activation_min, T output_activation_max,
+ T* output_data, const Dims<4>& output_dims) {
+ tflite::ArithmeticParams op_params;
+ op_params.float_activation_min = output_activation_min;
+ op_params.float_activation_max = output_activation_max;
+ BroadcastAdd4DSlow(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data,
+ DimsToShape(output_dims), output_data);
+}
+
+template <FusedActivationFunctionType Ac>
+inline void BroadcastAddFivefold(
+ int y0, int y1, int y2, int y3, int y4, int left_shift,
+ const uint8* input1_data, const Dims<4>& input1_dims, int32 input1_offset,
+ int32 input1_multiplier, int input1_shift, const uint8* input2_data,
+ const Dims<4>& input2_dims, int32 input2_offset, int32 input2_multiplier,
+ int input2_shift, int32 output_offset, int32 output_multiplier,
+ int output_shift, int32 output_activation_min, int32 output_activation_max,
+ uint8* output_data, const Dims<4>& output_dims) {
+ constexpr int kReverseShift = -1;
+ static_assert(Ac == FusedActivationFunctionType::kNone ||
+ Ac == FusedActivationFunctionType::kRelu ||
+ Ac == FusedActivationFunctionType::kRelu6 ||
+ Ac == FusedActivationFunctionType::kRelu1,
+ "");
+ TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ if (Ac == FusedActivationFunctionType::kNone) {
+ TFLITE_DCHECK_EQ(output_activation_min, 0);
+ TFLITE_DCHECK_EQ(output_activation_max, 255);
+ }
+ tflite::ArithmeticParams op_params;
+ op_params.broadcast_category =
+ tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
+ op_params.left_shift = left_shift;
+ op_params.input1_offset = input1_offset;
+ op_params.input1_multiplier = input1_multiplier;
+ op_params.input1_shift = kReverseShift * input1_shift;
+ op_params.input2_offset = input2_offset;
+ op_params.input2_multiplier = input2_multiplier;
+ op_params.input2_shift = kReverseShift * input2_shift;
+ op_params.output_offset = output_offset;
+ op_params.output_multiplier = output_multiplier;
+ op_params.output_shift = kReverseShift * output_shift;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ op_params.broadcast_shape[4] = y0;
+ op_params.broadcast_shape[3] = y1;
+ op_params.broadcast_shape[2] = y2;
+ op_params.broadcast_shape[1] = y3;
+ op_params.broadcast_shape[0] = y4;
+ BroadcastAddFivefold(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data,
+ DimsToShape(output_dims), output_data);
+}
+
+// legacy, for compatibility with old checked-in code
+template <FusedActivationFunctionType Ac, typename T>
+void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
+ const T* input2_data, const Dims<4>& input2_dims,
+ T* output_data, const Dims<4>& output_dims) {
+ T output_activation_min, output_activation_max;
+ GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
+
+ BroadcastAdd(input1_data, input1_dims, input2_data, input2_dims,
+ output_activation_min, output_activation_max, output_data,
+ output_dims);
+}
+
+template <FusedActivationFunctionType Ac>
+inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
+ int input1_shift, const int16* input2_data,
+ const Dims<4>& input2_dims, int input2_shift,
+ int16 output_activation_min, int16 output_activation_max,
+ int16* output_data, const Dims<4>& output_dims) {
+ static_assert(Ac == FusedActivationFunctionType::kNone ||
+ Ac == FusedActivationFunctionType::kRelu ||
+ Ac == FusedActivationFunctionType::kRelu6 ||
+ Ac == FusedActivationFunctionType::kRelu1,
+ "");
+ TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+ if (Ac == FusedActivationFunctionType::kNone) {
+ TFLITE_DCHECK_EQ(output_activation_min, -32768);
+ TFLITE_DCHECK_EQ(output_activation_max, 32767);
+ }
+
+ tflite::ArithmeticParams op_params;
+ op_params.input1_shift = kReverseShift * input1_shift;
+ op_params.input2_shift = kReverseShift * input2_shift;
+ op_params.quantized_activation_min = output_activation_min;
+ op_params.quantized_activation_max = output_activation_max;
+ Add(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+inline void Sub(const float* input1_data, const Dims<4>& input1_dims,
+ const float* input2_data, const Dims<4>& input2_dims,
+ float* output_data, const Dims<4>& output_dims) {
+ float output_activation_min, output_activation_max;
+ GetActivationMinMax(FusedActivationFunctionType::kNone,
+ &output_activation_min, &output_activation_max);
+ tflite::ArithmeticParams op_params;
+ op_params.float_activation_min = output_activation_min;
+ op_params.float_activation_max = output_activation_max;
+ Sub(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
+template <typename T>
+void Sub(const T* input1_data, const Dims<4>& input1_dims, const T* input2_data,
+ const Dims<4>& input2_dims, T* output_data,
+ const Dims<4>& output_dims) {
+ tflite::ArithmeticParams op_params;
+ op_params.quantized_activation_min = std::numeric_limits<T>::min();
+ op_params.quantized_activation_max = std::numeric_limits<T>::max();
+ Sub(op_params, DimsToShape(input1_dims), input1_data,
+ DimsToShape(input2_dims), input2_data, DimsToShape(output_dims),
+ output_data);
+}
+
inline void AveragePool(const float* input_data, const Dims<4>& input_dims,
int stride_width, int stride_height, int pad_width,
int pad_height, int kwidth, int kheight,
diff --git a/tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.cc b/tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.cc
index ccf112c990..7ead449ca8 100644
--- a/tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.cc
+++ b/tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.cc
@@ -195,6 +195,13 @@ void PortableZeroVector(float* vector, int v_size) {
memset(vector, 0, v_size * sizeof(float));
}
+void PortableVectorScalarMultiply(const int8_t* vector, const int v_size,
+ const float scale, float* result) {
+ for (int v = 0; v < v_size; ++v) {
+ *result++ = scale * *vector++;
+ }
+}
+
void PortableClipVector(const float* vector, int v_size, float abs_limit,
float* result) {
for (int v = 0; v < v_size; v++) {
diff --git a/tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.h b/tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.h
index d2e1fecd25..d3a4fa8507 100644
--- a/tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.h
+++ b/tensorflow/contrib/lite/kernels/internal/reference/portable_tensor_utils.h
@@ -96,6 +96,10 @@ void PortableSub1Vector(const float* vector, int v_size, float* result);
// Fill vector with 0.f.
void PortableZeroVector(float* vector, int v_size);
+// Multiply all elements of vector with a scalar.
+void PortableVectorScalarMultiply(const int8_t* vector, int v_size, float scale,
+ float* result);
+
// Clip elements of a vector using a abs_limit value.
void PortableClipVector(const float* vector, int v_size, float abs_limit,
float* result);
@@ -199,6 +203,12 @@ void ZeroVector(float* vector, int v_size) {
PortableZeroVector(vector, v_size);
}
+// Multiply all elements of vector with a scalar.
+void VectorScalarMultiply(const int8_t* vector, int v_size, float scale,
+ float* result) {
+ PortableVectorScalarMultiply(vector, v_size, scale, result);
+}
+
void ClipVector(const float* vector, int v_size, float abs_limit,
float* result) {
PortableClipVector(vector, v_size, abs_limit, result);
diff --git a/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h b/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
index 2d40f1769b..31a54c2b62 100644
--- a/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
+++ b/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
@@ -158,98 +158,6 @@ SaturatingRoundingMultiplyByPOTParam(
SaturatingRoundingMultiplyByPOTParam(a.raw(), exponent));
}
-// DO NOT USE THIS STRUCT FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING ELEMENT-WISE
-// BROADCASTING.
-//
-// NdArrayDesc<N> describes the shape and memory layout of an N-dimensional
-// rectangular array of numbers.
-//
-// NdArrayDesc<N> is basically identical to Dims<N> defined in types.h.
-// However, as Dims<N> is to be deprecated, this class exists as an adaptor
-// to enable simple unoptimized implementations of element-wise broadcasting
-// operations.
-template <int N>
-struct NdArrayDesc {
- // The "extent" of each dimension. Indices along dimension d must be in the
- // half-open interval [0, extents[d]).
- int extents[N];
-
- // The number of *elements* (not bytes) between consecutive indices of each
- // dimension.
- int strides[N];
-};
-
-// DO NOT USE THIS FUNCTION FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING
-// ELEMENT-WISE BROADCASTING.
-//
-// Same as Offset(), except takes as NdArrayDesc<N> instead of Dims<N>.
-inline int SubscriptToIndex(const NdArrayDesc<4>& desc, int i0, int i1, int i2,
- int i3) {
- TFLITE_DCHECK(i0 >= 0 && i0 < desc.extents[0]);
- TFLITE_DCHECK(i1 >= 0 && i1 < desc.extents[1]);
- TFLITE_DCHECK(i2 >= 0 && i2 < desc.extents[2]);
- TFLITE_DCHECK(i3 >= 0 && i3 < desc.extents[3]);
- return i0 * desc.strides[0] + i1 * desc.strides[1] + i2 * desc.strides[2] +
- i3 * desc.strides[3];
-}
-
-// Given the dimensions of the operands for an element-wise binary broadcast,
-// adjusts them so that they can be directly iterated over with simple loops.
-// Returns the adjusted dims as instances of NdArrayDesc in 'desc0_out' and
-// 'desc1_out'. 'desc0_out' and 'desc1_out' cannot be nullptr.
-//
-// This function assumes that the two input shapes are compatible up to
-// broadcasting and the shorter one has already been prepended with 1s to be the
-// same length. E.g., if shape0 is (1, 16, 16, 64) and shape1 is (1, 64),
-// shape1 must already have been prepended to be (1, 1, 1, 64). Recall that
-// Dims<N> refer to shapes in reverse order. In this case, input0_dims will be
-// (64, 16, 16, 1) and input1_dims will be (64, 1, 1, 1).
-//
-// When two shapes are compatible up to broadcasting, for each dimension d,
-// the input extents are either equal, or one of them is 1.
-//
-// This function performs the following for each dimension d:
-// - If the extents are equal, then do nothing since the loop that walks over
-// both of the input arrays is correct.
-// - Otherwise, one (and only one) of the extents must be 1. Say extent0 is 1
-// and extent1 is e1. Then set extent0 to e1 and stride0 *to 0*. This allows
-// array0 to be referenced *at any index* in dimension d and still access the
-// same slice.
-template <int N>
-inline void NdArrayDescsForElementwiseBroadcast(const Dims<N>& input0_dims,
- const Dims<N>& input1_dims,
- NdArrayDesc<N>* desc0_out,
- NdArrayDesc<N>* desc1_out) {
- TFLITE_DCHECK(desc0_out != nullptr);
- TFLITE_DCHECK(desc1_out != nullptr);
-
- // Copy dims to desc.
- for (int i = 0; i < N; ++i) {
- desc0_out->extents[i] = input0_dims.sizes[i];
- desc0_out->strides[i] = input0_dims.strides[i];
- desc1_out->extents[i] = input1_dims.sizes[i];
- desc1_out->strides[i] = input1_dims.strides[i];
- }
-
- // Walk over each dimension. If the extents are equal do nothing.
- // Otherwise, set the desc with extent 1 to have extent equal to the other and
- // stride 0.
- for (int i = 0; i < N; ++i) {
- const int extent0 = ArraySize(input0_dims, i);
- const int extent1 = ArraySize(input1_dims, i);
- if (extent0 != extent1) {
- if (extent0 == 1) {
- desc0_out->strides[i] = 0;
- desc0_out->extents[i] = extent1;
- } else {
- TFLITE_DCHECK_EQ(extent1, 1);
- desc1_out->strides[i] = 0;
- desc1_out->extents[i] = extent0;
- }
- }
- }
-}
-
inline void Conv(const float* input_data, const Dims<4>& input_dims,
const float* filter_data, const Dims<4>& filter_dims,
const float* bias_data, const Dims<4>& bias_dims,
@@ -1065,114 +973,108 @@ inline void L2Normalization(const uint8* input_data,
}
template <typename T>
-inline void Add(const T* input1_data, const Dims<4>& input1_dims,
- const T* input2_data, const Dims<4>& input2_dims,
- T output_activation_min, T output_activation_max,
- T* output_data, const Dims<4>& output_dims) {
- const int flat_size = MatchingFlatSize(input1_dims, input2_dims, output_dims);
+inline void Add(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const T* input1_data,
+ const RuntimeShape& input2_shape, const T* input2_data,
+ const RuntimeShape& output_shape, T* output_data) {
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
- input1_data[i] + input2_data[i], output_activation_min,
- output_activation_max);
+ input1_data[i] + input2_data[i], params.quantized_activation_min,
+ params.quantized_activation_max);
}
}
-// legacy, for compatibility with old checked-in code
-template <FusedActivationFunctionType Ac>
-void Add(const float* input1_data, const Dims<4>& input1_dims,
- const float* input2_data, const Dims<4>& input2_dims,
- float* output_data, const Dims<4>& output_dims) {
- float output_activation_min, output_activation_max;
- GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
-
- Add(input1_data, input1_dims, input2_data, input2_dims, output_activation_min,
- output_activation_max, output_data, output_dims);
+inline void Add(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const float* input1_data,
+ const RuntimeShape& input2_shape, const float* input2_data,
+ const RuntimeShape& output_shape, float* output_data) {
+ const int size = MatchingFlatSize(input1_shape, input2_shape, output_shape);
+ for (int i = 0; i < size; i++) {
+ auto x = input1_data[i] + input2_data[i];
+ output_data[i] = ActivationFunctionWithMinMax(
+ x, params.float_activation_min, params.float_activation_max);
+ }
}
-template <FusedActivationFunctionType Ac>
-inline void Add(int left_shift, const uint8* input1_data,
- const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift,
- const uint8* input2_data, const Dims<4>& input2_dims,
- int32 input2_offset, int32 input2_multiplier, int input2_shift,
- int32 output_offset, int32 output_multiplier, int output_shift,
- int32 output_activation_min, int32 output_activation_max,
- uint8* output_data, const Dims<4>& output_dims) {
- static_assert(Ac == FusedActivationFunctionType::kNone ||
- Ac == FusedActivationFunctionType::kRelu ||
- Ac == FusedActivationFunctionType::kRelu6 ||
- Ac == FusedActivationFunctionType::kRelu1,
- "");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- if (Ac == FusedActivationFunctionType::kNone) {
- TFLITE_DCHECK_EQ(output_activation_min, 0);
- TFLITE_DCHECK_EQ(output_activation_max, 255);
- }
- const int batches =
- MatchingArraySize(input1_dims, 3, input2_dims, 3, output_dims, 3);
- const int height =
- MatchingArraySize(input1_dims, 2, input2_dims, 2, output_dims, 2);
- const int width =
- MatchingArraySize(input1_dims, 1, input2_dims, 1, output_dims, 1);
- const int depth =
- MatchingArraySize(input1_dims, 0, input2_dims, 0, output_dims, 0);
- for (int b = 0; b < batches; ++b) {
- for (int y = 0; y < height; ++y) {
- for (int x = 0; x < width; ++x) {
- for (int c = 0; c < depth; ++c) {
- const int32 input1_val =
- input1_offset + input1_data[Offset(input1_dims, c, x, y, b)];
- const int32 input2_val =
- input2_offset + input2_data[Offset(input2_dims, c, x, y, b)];
- const int32 shifted_input1_val = input1_val * (1 << left_shift);
- const int32 shifted_input2_val = input2_val * (1 << left_shift);
- const int32 scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, input1_multiplier,
- kReverseShift * input1_shift);
- const int32 scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, input2_multiplier,
- kReverseShift * input2_shift);
- const int32 raw_sum = scaled_input1_val + scaled_input2_val;
- const int32 raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sum, output_multiplier, kReverseShift * output_shift) +
- output_offset;
- const int32 clamped_output =
- std::min(output_activation_max,
- std::max(output_activation_min, raw_output));
- output_data[Offset(output_dims, c, x, y, b)] =
- static_cast<uint8>(clamped_output);
- }
- }
- }
+// Element-wise add that can often be used for inner loop of broadcast add as
+// well as the non-broadcast add.
+inline void AddElementwise(int size, const ArithmeticParams& params,
+ const uint8* input1_data, const uint8* input2_data,
+ uint8* output_data) {
+ TFLITE_DCHECK_GT(params.input1_offset, -256);
+ TFLITE_DCHECK_GT(params.input2_offset, -256);
+ TFLITE_DCHECK_LT(params.input1_offset, 256);
+ TFLITE_DCHECK_LT(params.input2_offset, 256);
+
+ for (int i = 0; i < size; ++i) {
+ const int32 input1_val = params.input1_offset + input1_data[i];
+ const int32 input2_val = params.input2_offset + input2_data[i];
+ const int32 shifted_input1_val = input1_val * (1 << params.left_shift);
+ const int32 shifted_input2_val = input2_val * (1 << params.left_shift);
+ const int32 scaled_input1_val =
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
+ shifted_input1_val, params.input1_multiplier, params.input1_shift);
+ const int32 scaled_input2_val =
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
+ shifted_input2_val, params.input2_multiplier, params.input2_shift);
+ const int32 raw_sum = scaled_input1_val + scaled_input2_val;
+ const int32 raw_output =
+ MultiplyByQuantizedMultiplierSmallerThanOneExp(
+ raw_sum, params.output_multiplier, params.output_shift) +
+ params.output_offset;
+ const int32 clamped_output =
+ std::min(params.quantized_activation_max,
+ std::max(params.quantized_activation_min, raw_output));
+ output_data[i] = static_cast<uint8>(clamped_output);
}
}
-inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
- int input1_shift, const int16* input2_data,
- const Dims<4>& input2_dims, int input2_shift,
- int16 output_activation_min, int16 output_activation_max,
- int16* output_data, const Dims<4>& output_dims) {
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
+inline void Add(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const uint8* input1_data,
+ const RuntimeShape& input2_shape, const uint8* input2_data,
+ const RuntimeShape& output_shape, uint8* output_data) {
+ TFLITE_DCHECK_LE(params.quantized_activation_min,
+ params.quantized_activation_max);
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, output_shape);
- const int flat_size = MatchingFlatSize(output_dims, input1_dims, input2_dims);
+ TFLITE_DCHECK_GT(params.input1_offset, -256);
+ TFLITE_DCHECK_GT(params.input2_offset, -256);
+ TFLITE_DCHECK_LT(params.input1_offset, 256);
+ TFLITE_DCHECK_LT(params.input2_offset, 256);
+ AddElementwise(flat_size, params, input1_data, input2_data, output_data);
+}
+
+inline void Add(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const int16* input1_data,
+ const RuntimeShape& input2_shape, const int16* input2_data,
+ const RuntimeShape& output_shape, int16* output_data) {
+ TFLITE_DCHECK_LE(params.quantized_activation_min,
+ params.quantized_activation_max);
+
+ const int input1_shift = params.input1_shift;
+ const int flat_size =
+ MatchingFlatSize(output_shape, input1_shape, input2_shape);
+ const int16 output_activation_min = params.quantized_activation_min;
+ const int16 output_activation_max = params.quantized_activation_max;
- TFLITE_DCHECK(input1_shift == 0 || input2_shift == 0);
- TFLITE_DCHECK_GE(input1_shift, 0);
- TFLITE_DCHECK_GE(input2_shift, 0);
+ TFLITE_DCHECK(input1_shift == 0 || params.input2_shift == 0);
+ TFLITE_DCHECK_LE(input1_shift, 0);
+ TFLITE_DCHECK_LE(params.input2_shift, 0);
const int16* not_shift_input = input1_shift == 0 ? input1_data : input2_data;
const int16* shift_input = input1_shift == 0 ? input2_data : input1_data;
- const int input_shift = input1_shift == 0 ? input2_shift : input1_shift;
+ const int input_right_shift =
+ input1_shift == 0 ? -params.input2_shift : -input1_shift;
for (int i = 0; i < flat_size; i++) {
// F0 uses 0 integer bits, range [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
F0 input_ready_scaled = F0::FromRaw(not_shift_input[i]);
- F0 scaled_input =
- F0::FromRaw(gemmlowp::RoundingDivideByPOT(shift_input[i], input_shift));
+ F0 scaled_input = F0::FromRaw(
+ gemmlowp::RoundingDivideByPOT(shift_input[i], input_right_shift));
F0 result = gemmlowp::SaturatingAdd(scaled_input, input_ready_scaled);
const int16 raw_output = result.raw();
const int16 clamped_output = std::min(
@@ -1181,42 +1083,28 @@ inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
}
}
-template <FusedActivationFunctionType Ac>
-inline void Add(const int16* input1_data, const Dims<4>& input1_dims,
- int input1_shift, const int16* input2_data,
- const Dims<4>& input2_dims, int input2_shift,
- int16 output_activation_min, int16 output_activation_max,
- int16* output_data, const Dims<4>& output_dims) {
- static_assert(Ac == FusedActivationFunctionType::kNone ||
- Ac == FusedActivationFunctionType::kRelu ||
- Ac == FusedActivationFunctionType::kRelu6 ||
- Ac == FusedActivationFunctionType::kRelu1,
- "");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- if (Ac == FusedActivationFunctionType::kNone) {
- TFLITE_DCHECK_EQ(output_activation_min, -32768);
- TFLITE_DCHECK_EQ(output_activation_max, 32767);
- }
-
- Add(input1_data, input1_dims, input1_shift, input2_data, input2_dims,
- input2_shift, output_activation_min, output_activation_max, output_data,
- output_dims);
-}
-
// TODO(jiawen): We can implement BroadcastAdd on buffers of arbitrary
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
-template <typename T>
-void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
- const T* input2_data, const Dims<4>& input2_dims,
- T output_activation_min, T output_activation_max,
- T* output_data, const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastAdd");
-
+// TODO(benoitjacob): BroadcastAdd is intentionally duplicated from
+// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
+// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
+// reference_ops.h.
+inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const float* input1_data,
+ const RuntimeShape& input2_shape,
+ const float* input2_data,
+ const RuntimeShape& output_shape,
+ float* output_data) {
+ gemmlowp::ScopedProfilingLabel label("BroadcastAdd4DSlow/float");
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
+ NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
+ &desc2);
+ RuntimeShape extended_output_shape =
+ RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
@@ -1229,49 +1117,77 @@ void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
- output_data[Offset(output_dims, c, x, y, b)] =
+ for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
+ for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
+ for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
+ for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
+ output_data[Offset(extended_output_shape, b, y, x, c)] =
ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, c, x, y, b)] +
- input2_data[SubscriptToIndex(desc2, c, x, y, b)],
- output_activation_min, output_activation_max);
+ input1_data[SubscriptToIndex(desc1, b, y, x, c)] +
+ input2_data[SubscriptToIndex(desc2, b, y, x, c)],
+ params.float_activation_min, params.float_activation_max);
}
}
}
}
}
-// legacy, for compatibility with old checked-in code
-template <FusedActivationFunctionType Ac, typename T>
-void BroadcastAdd(const T* input1_data, const Dims<4>& input1_dims,
- const T* input2_data, const Dims<4>& input2_dims,
- T* output_data, const Dims<4>& output_dims) {
- T output_activation_min, output_activation_max;
- GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
+inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const int32* input1_data,
+ const RuntimeShape& input2_shape,
+ const int32* input2_data,
+ const RuntimeShape& output_shape,
+ int32* output_data) {
+ gemmlowp::ScopedProfilingLabel label("BroadcastAdd4DSlow/int32");
+ NdArrayDesc<4> desc1;
+ NdArrayDesc<4> desc2;
+ NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
+ &desc2);
+ RuntimeShape extended_output_shape =
+ RuntimeShape::ExtendedShape(4, output_shape);
- BroadcastAdd(input1_data, input1_dims, input2_data, input2_dims,
- output_activation_min, output_activation_max, output_data,
- output_dims);
+ // In Tensorflow, the dimensions are canonically named (batch_number, row,
+ // col, channel), with extents (batches, height, width, depth), with the
+ // trailing dimension changing most rapidly (channels has the smallest stride,
+ // typically 1 element).
+ //
+ // In generated C code, we store arrays with the dimensions reversed. The
+ // first dimension has smallest stride.
+ //
+ // We name our variables by their Tensorflow convention, but generate C code
+ // nesting loops such that the innermost loop has the smallest stride for the
+ // best cache behavior.
+ for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
+ for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
+ for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
+ for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
+ output_data[Offset(extended_output_shape, b, y, x, c)] =
+ ActivationFunctionWithMinMax(
+ input1_data[SubscriptToIndex(desc1, b, y, x, c)] +
+ input2_data[SubscriptToIndex(desc2, b, y, x, c)],
+ params.quantized_activation_min,
+ params.quantized_activation_max);
+ }
+ }
+ }
+ }
}
-inline void BroadcastAdd(int left_shift, const uint8* input1_data,
- const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift,
- const uint8* input2_data, const Dims<4>& input2_dims,
- int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset,
- int32 output_multiplier, int output_shift,
- int32 output_activation_min,
- int32 output_activation_max, uint8* output_data,
- const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastAdd/8bit");
-
+inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const uint8* input1_data,
+ const RuntimeShape& input2_shape,
+ const uint8* input2_data,
+ const RuntimeShape& output_shape,
+ uint8* output_data) {
+ gemmlowp::ScopedProfilingLabel label("BroadcastAdd4DSlow/uint8");
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
+ NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
+ &desc2);
+ RuntimeShape extended_output_shape =
+ RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
@@ -1284,33 +1200,37 @@ inline void BroadcastAdd(int left_shift, const uint8* input1_data,
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
+ for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
+ for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
+ for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
+ for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32 input1_val =
- input1_offset + input1_data[SubscriptToIndex(desc1, c, x, y, b)];
+ params.input1_offset +
+ input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32 input2_val =
- input2_offset + input2_data[SubscriptToIndex(desc2, c, x, y, b)];
- const int32 shifted_input1_val = input1_val * (1 << left_shift);
- const int32 shifted_input2_val = input2_val * (1 << left_shift);
+ params.input2_offset +
+ input2_data[SubscriptToIndex(desc2, b, y, x, c)];
+ const int32 shifted_input1_val =
+ input1_val * (1 << params.left_shift);
+ const int32 shifted_input2_val =
+ input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, input1_multiplier,
- kReverseShift * input1_shift);
+ shifted_input1_val, params.input1_multiplier,
+ params.input1_shift);
const int32 scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, input2_multiplier,
- kReverseShift * input2_shift);
+ shifted_input2_val, params.input2_multiplier,
+ params.input2_shift);
const int32 raw_sum = scaled_input1_val + scaled_input2_val;
const int32 raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sum, output_multiplier, kReverseShift * output_shift) +
- output_offset;
+ raw_sum, params.output_multiplier, params.output_shift) +
+ params.output_offset;
const int32 clamped_output =
- std::min(output_activation_max,
- std::max(output_activation_min, raw_output));
- output_data[Offset(output_dims, c, x, y, b)] =
+ std::min(params.quantized_activation_max,
+ std::max(params.quantized_activation_min, raw_output));
+ output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<uint8>(clamped_output);
}
}
@@ -1318,117 +1238,62 @@ inline void BroadcastAdd(int left_shift, const uint8* input1_data,
}
}
-inline void BroadcastAddFivefold(
- int y0, int y1, int y2, int y3, int y4, int left_shift,
- const uint8* input1_data, const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift, const uint8* input2_data,
- const Dims<4>& input2_dims, int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset, int32 output_multiplier,
- int output_shift, int32 output_activation_min, int32 output_activation_max,
- uint8* output_data, const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastAddFivefold/8bit");
-
- int sb1 = y0;
- int sa2 = y0;
- int sb2 = y0 * y1;
- int sa3 = y0 * y2;
- int sa4 = y0 * y2 * y3;
- int sb4 = y0 * y1 * y2;
-
+inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
+ const RuntimeShape& unswitched_input1_shape,
+ const uint8* unswitched_input1_data,
+ const RuntimeShape& unswitched_input2_shape,
+ const uint8* unswitched_input2_data,
+ const RuntimeShape& output_shape,
+ uint8* output_data) {
+ ArithmeticParams switched_params = unswitched_params;
+ switched_params.input1_offset = unswitched_params.input2_offset;
+ switched_params.input1_multiplier = unswitched_params.input2_multiplier;
+ switched_params.input1_shift = unswitched_params.input2_shift;
+ switched_params.input2_offset = unswitched_params.input1_offset;
+ switched_params.input2_multiplier = unswitched_params.input1_multiplier;
+ switched_params.input2_shift = unswitched_params.input1_shift;
+
+ const bool use_unswitched =
+ unswitched_params.broadcast_category ==
+ tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
+
+ const ArithmeticParams& params =
+ use_unswitched ? unswitched_params : switched_params;
+ const uint8* input1_data =
+ use_unswitched ? unswitched_input1_data : unswitched_input2_data;
+ const uint8* input2_data =
+ use_unswitched ? unswitched_input2_data : unswitched_input1_data;
+
+ // Fivefold nested loops. The second input resets its position for each
+ // iteration of the second loop. The first input resets its position at the
+ // beginning of the fourth loop. The innermost loop is an elementwise add of
+ // sections of the arrays.
uint8* output_data_ptr = output_data;
- for (int i4 = 0; i4 < y4; ++i4) {
- for (int i3 = 0; i3 < y3; ++i3) {
+ const uint8* input1_data_ptr = input1_data;
+ const uint8* input2_data_reset = input2_data;
+ int y0 = params.broadcast_shape[0];
+ int y1 = params.broadcast_shape[1];
+ int y2 = params.broadcast_shape[2];
+ int y3 = params.broadcast_shape[3];
+ int y4 = params.broadcast_shape[4];
+ for (int i0 = 0; i0 < y0; ++i0) {
+ const uint8* input2_data_ptr;
+ for (int i1 = 0; i1 < y1; ++i1) {
+ input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
- for (int i1 = 0; i1 < y1; ++i1) {
- for (int i0 = 0; i0 < y0; ++i0) {
- const int32 input1_val =
- input1_offset +
- input1_data[i4 * sa4 + i3 * sa3 + i2 * sa2 + i0];
- const int32 input2_val =
- input2_offset +
- input2_data[i4 * sb4 + i2 * sb2 + i1 * sb1 + i0];
- const int32 shifted_input1_val = input1_val * (1 << left_shift);
- const int32 shifted_input2_val = input2_val * (1 << left_shift);
- const int32 scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, input1_multiplier,
- kReverseShift * input1_shift);
- const int32 scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, input2_multiplier,
- kReverseShift * input2_shift);
- const int32 raw_sum = scaled_input1_val + scaled_input2_val;
- const int32 raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sum, output_multiplier, kReverseShift * output_shift) +
- output_offset;
- const int32 clamped_output =
- std::min(output_activation_max,
- std::max(output_activation_min, raw_output));
- *output_data_ptr = static_cast<uint8>(clamped_output);
- ++output_data_ptr;
- }
+ for (int i3 = 0; i3 < y3; ++i3) {
+ AddElementwise(y4, params, input1_data_ptr, input2_data_ptr,
+ output_data_ptr);
+ input2_data_ptr += y4;
+ output_data_ptr += y4;
}
+ input1_data_ptr += y4;
}
}
+ input2_data_reset = input2_data_ptr;
}
}
-template <FusedActivationFunctionType Ac>
-inline void BroadcastAdd(int left_shift, const uint8* input1_data,
- const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift,
- const uint8* input2_data, const Dims<4>& input2_dims,
- int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset,
- int32 output_multiplier, int output_shift,
- int32 output_activation_min,
- int32 output_activation_max, uint8* output_data,
- const Dims<4>& output_dims) {
- static_assert(Ac == FusedActivationFunctionType::kNone ||
- Ac == FusedActivationFunctionType::kRelu ||
- Ac == FusedActivationFunctionType::kRelu6 ||
- Ac == FusedActivationFunctionType::kRelu1,
- "");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- if (Ac == FusedActivationFunctionType::kNone) {
- TFLITE_DCHECK_EQ(output_activation_min, 0);
- TFLITE_DCHECK_EQ(output_activation_max, 255);
- }
- BroadcastAdd(left_shift, input1_data, input1_dims, input1_offset,
- input1_multiplier, input1_shift, input2_data, input2_dims,
- input2_offset, input2_multiplier, input2_shift, output_offset,
- output_multiplier, output_shift, output_activation_min,
- output_activation_max, output_data, output_dims);
-}
-
-template <FusedActivationFunctionType Ac>
-inline void BroadcastAddFivefold(
- int y0, int y1, int y2, int y3, int y4, int left_shift,
- const uint8* input1_data, const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift, const uint8* input2_data,
- const Dims<4>& input2_dims, int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset, int32 output_multiplier,
- int output_shift, int32 output_activation_min, int32 output_activation_max,
- uint8* output_data, const Dims<4>& output_dims) {
- static_assert(Ac == FusedActivationFunctionType::kNone ||
- Ac == FusedActivationFunctionType::kRelu ||
- Ac == FusedActivationFunctionType::kRelu6 ||
- Ac == FusedActivationFunctionType::kRelu1,
- "");
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- if (Ac == FusedActivationFunctionType::kNone) {
- TFLITE_DCHECK_EQ(output_activation_min, 0);
- TFLITE_DCHECK_EQ(output_activation_max, 255);
- }
- BroadcastAddFivefold(y0, y1, y2, y3, y4, left_shift, input1_data, input1_dims,
- input1_offset, input1_multiplier, input1_shift,
- input2_data, input2_dims, input2_offset,
- input2_multiplier, input2_shift, output_offset,
- output_multiplier, output_shift, output_activation_min,
- output_activation_max, output_data, output_dims);
-}
-
template <typename T>
inline void Mul(const T* input1_data, const Dims<4>& input1_dims,
const T* input2_data, const Dims<4>& input2_dims,
@@ -1654,10 +1519,11 @@ void BroadcastDiv(const T* input1_data, const Dims<4>& input1_dims,
}
}
-inline void Div(const float* input1_data, const Dims<4>& input1_dims,
- const float* input2_data, const Dims<4>& input2_dims,
- float output_activation_min, float output_activation_max,
- float* output_data, const Dims<4>& output_dims) {
+template <typename T>
+inline void Div(const T* input1_data, const Dims<4>& input1_dims,
+ const T* input2_data, const Dims<4>& input2_dims,
+ T output_activation_min, T output_activation_max,
+ T* output_data, const Dims<4>& output_dims) {
const int flat_size = MatchingFlatSize(input1_dims, input2_dims, output_dims);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
@@ -1666,15 +1532,35 @@ inline void Div(const float* input1_data, const Dims<4>& input1_dims,
}
}
-inline void Sub(const float* input1_data, const Dims<4>& input1_dims,
- const float* input2_data, const Dims<4>& input2_dims,
- float output_activation_min, float output_activation_max,
- float* output_data, const Dims<4>& output_dims) {
- const int flat_size = MatchingFlatSize(input1_dims, input2_dims, output_dims);
+inline void SubNonBroadcast(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const float* input1_data,
+ const RuntimeShape& input2_shape,
+ const float* input2_data,
+ const RuntimeShape& output_shape,
+ float* output_data) {
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
- input1_data[i] - input2_data[i], output_activation_min,
- output_activation_max);
+ input1_data[i] - input2_data[i], params.float_activation_min,
+ params.float_activation_max);
+ }
+}
+
+inline void SubNonBroadcast(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const int32* input1_data,
+ const RuntimeShape& input2_shape,
+ const int32* input2_data,
+ const RuntimeShape& output_shape,
+ int32* output_data) {
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, output_shape);
+ for (int i = 0; i < flat_size; ++i) {
+ output_data[i] = ActivationFunctionWithMinMax(
+ input1_data[i] - input2_data[i], params.quantized_activation_min,
+ params.quantized_activation_max);
}
}
@@ -1682,16 +1568,24 @@ inline void Sub(const float* input1_data, const Dims<4>& input1_dims,
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
-template <typename T>
-void BroadcastSub(const T* input1_data, const Dims<4>& input1_dims,
- const T* input2_data, const Dims<4>& input2_dims,
- T output_activation_min, T output_activation_max,
- T* output_data, const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastSub");
-
+// TODO(benoitjacob): BroadcastSub is intentionally duplicated from
+// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
+// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
+// reference_ops.h.
+inline void BroadcastSub4DSlow(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const float* input1_data,
+ const RuntimeShape& input2_shape,
+ const float* input2_data,
+ const RuntimeShape& output_shape,
+ float* output_data) {
+ gemmlowp::ScopedProfilingLabel label("BroadcastAdd4DSlow/float");
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
+ NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
+ &desc2);
+ RuntimeShape extended_output_shape =
+ RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
@@ -1704,36 +1598,35 @@ void BroadcastSub(const T* input1_data, const Dims<4>& input1_dims,
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
- output_data[Offset(output_dims, c, x, y, b)] =
+ for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
+ for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
+ for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
+ for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
+ output_data[Offset(extended_output_shape, b, y, x, c)] =
ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, c, x, y, b)] -
- input2_data[SubscriptToIndex(desc2, c, x, y, b)],
- output_activation_min, output_activation_max);
+ input1_data[SubscriptToIndex(desc1, b, y, x, c)] -
+ input2_data[SubscriptToIndex(desc2, b, y, x, c)],
+ params.float_activation_min, params.float_activation_max);
}
}
}
}
}
-inline void BroadcastSub(int left_shift, const uint8* input1_data,
- const Dims<4>& input1_dims, int32 input1_offset,
- int32 input1_multiplier, int input1_shift,
- const uint8* input2_data, const Dims<4>& input2_dims,
- int32 input2_offset, int32 input2_multiplier,
- int input2_shift, int32 output_offset,
- int32 output_multiplier, int output_shift,
- int32 output_activation_min,
- int32 output_activation_max, uint8* output_data,
- const Dims<4>& output_dims) {
- gemmlowp::ScopedProfilingLabel label("BroadcastSub/8bit");
-
+inline void BroadcastSub4DSlow(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const uint8* input1_data,
+ const RuntimeShape& input2_shape,
+ const uint8* input2_data,
+ const RuntimeShape& output_shape,
+ uint8* output_data) {
+ gemmlowp::ScopedProfilingLabel label("BroadcastAdd4DSlow/uint8");
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
+ NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
+ &desc2);
+ RuntimeShape extended_output_shape =
+ RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
@@ -1746,33 +1639,37 @@ inline void BroadcastSub(int left_shift, const uint8* input1_data,
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
+ for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
+ for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
+ for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
+ for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32 input1_val =
- input1_offset + input1_data[SubscriptToIndex(desc1, c, x, y, b)];
+ params.input1_offset +
+ input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32 input2_val =
- input2_offset + input2_data[SubscriptToIndex(desc2, c, x, y, b)];
- const int32 shifted_input1_val = input1_val * (1 << left_shift);
- const int32 shifted_input2_val = input2_val * (1 << left_shift);
+ params.input2_offset +
+ input2_data[SubscriptToIndex(desc2, b, y, x, c)];
+ const int32 shifted_input1_val =
+ input1_val * (1 << params.left_shift);
+ const int32 shifted_input2_val =
+ input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, input1_multiplier,
- kReverseShift * input1_shift);
+ shifted_input1_val, params.input1_multiplier,
+ params.input1_shift);
const int32 scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, input2_multiplier,
- kReverseShift * input2_shift);
+ shifted_input2_val, params.input2_multiplier,
+ params.input2_shift);
const int32 raw_sub = scaled_input1_val - scaled_input2_val;
const int32 raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sub, output_multiplier, kReverseShift * output_shift) +
- output_offset;
+ raw_sub, params.output_multiplier, params.output_shift) +
+ params.output_offset;
const int32 clamped_output =
- std::min(output_activation_max,
- std::max(output_activation_min, raw_output));
- output_data[Offset(output_dims, c, x, y, b)] =
+ std::min(params.quantized_activation_max,
+ std::max(params.quantized_activation_min, raw_output));
+ output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<uint8>(clamped_output);
}
}
@@ -1780,6 +1677,156 @@ inline void BroadcastSub(int left_shift, const uint8* input1_data,
}
}
+inline void BroadcastSub4DSlow(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const int32* input1_data,
+ const RuntimeShape& input2_shape,
+ const int32* input2_data,
+ const RuntimeShape& output_shape,
+ int32* output_data) {
+ gemmlowp::ScopedProfilingLabel label("BroadcastAdd4DSlow/int32");
+ NdArrayDesc<4> desc1;
+ NdArrayDesc<4> desc2;
+ NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
+ &desc2);
+ RuntimeShape extended_output_shape =
+ RuntimeShape::ExtendedShape(4, output_shape);
+
+ // In Tensorflow, the dimensions are canonically named (batch_number, row,
+ // col, channel), with extents (batches, height, width, depth), with the
+ // trailing dimension changing most rapidly (channels has the smallest stride,
+ // typically 1 element).
+ //
+ // In generated C code, we store arrays with the dimensions reversed. The
+ // first dimension has smallest stride.
+ //
+ // We name our variables by their Tensorflow convention, but generate C code
+ // nesting loops such that the innermost loop has the smallest stride for the
+ // best cache behavior.
+ for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
+ for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
+ for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
+ for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
+ output_data[Offset(extended_output_shape, b, y, x, c)] =
+ ActivationFunctionWithMinMax(
+ input1_data[SubscriptToIndex(desc1, b, y, x, c)] -
+ input2_data[SubscriptToIndex(desc2, b, y, x, c)],
+ params.quantized_activation_min,
+ params.quantized_activation_max);
+ }
+ }
+ }
+ }
+}
+
+template <typename T>
+void BroadcastSub4DSlow(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape, const T* input1_data,
+ const RuntimeShape& input2_shape, const T* input2_data,
+ const RuntimeShape& output_shape, T* output_data) {
+ gemmlowp::ScopedProfilingLabel label("BroadcastAdd4DSlow/templated");
+ NdArrayDesc<4> desc1;
+ NdArrayDesc<4> desc2;
+ NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
+ &desc2);
+ RuntimeShape extended_output_shape =
+ RuntimeShape::ExtendedShape(4, output_shape);
+
+ // In Tensorflow, the dimensions are canonically named (batch_number, row,
+ // col, channel), with extents (batches, height, width, depth), with the
+ // trailing dimension changing most rapidly (channels has the smallest stride,
+ // typically 1 element).
+ //
+ // In generated C code, we store arrays with the dimensions reversed. The
+ // first dimension has smallest stride.
+ //
+ // We name our variables by their Tensorflow convention, but generate C code
+ // nesting loops such that the innermost loop has the smallest stride for the
+ // best cache behavior.
+ for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
+ for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
+ for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
+ for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
+ output_data[Offset(extended_output_shape, b, y, x, c)] =
+ ActivationFunctionWithMinMax(
+ input1_data[SubscriptToIndex(desc1, b, y, x, c)] -
+ input2_data[SubscriptToIndex(desc2, b, y, x, c)],
+ params.quantized_activation_min,
+ params.quantized_activation_max);
+ }
+ }
+ }
+ }
+}
+
+template <typename T>
+void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape,
+ const T* input1_data, const RuntimeShape& input2_shape,
+ const T* input2_data, const RuntimeShape& output_shape,
+ T* output_data) {
+ NdArrayDesc<4> desc1;
+ NdArrayDesc<4> desc2;
+ NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
+ &desc2);
+ RuntimeShape extended_output_shape =
+ RuntimeShape::ExtendedShape(4, output_shape);
+
+ // In Tensorflow, the dimensions are canonically named (batch_number, row,
+ // col, channel), with extents (batches, height, width, depth), with the
+ // trailing dimension changing most rapidly (channels has the smallest stride,
+ // typically 1 element).
+ //
+ // In generated C code, we store arrays with the dimensions reversed. The
+ // first dimension has smallest stride.
+ //
+ // We name our variables by their Tensorflow convention, but generate C code
+ // nesting loops such that the innermost loop has the smallest stride for the
+ // best cache behavior.
+ for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
+ for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
+ for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
+ for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
+ output_data[Offset(extended_output_shape, b, y, x, c)] =
+ input1_data[SubscriptToIndex(desc1, b, y, x, c)] -
+ input2_data[SubscriptToIndex(desc2, b, y, x, c)];
+ }
+ }
+ }
+ }
+}
+
+inline void SubWithActivation(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const int32* input1_data,
+ const RuntimeShape& input2_shape,
+ const int32* input2_data,
+ const RuntimeShape& output_shape,
+ int32* output_data) {
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, input2_shape);
+ for (int i = 0; i < flat_size; ++i) {
+ output_data[i] = ActivationFunctionWithMinMax(
+ input1_data[i] - input2_data[i], params.quantized_activation_min,
+ params.quantized_activation_max);
+ }
+}
+
+inline void SubWithActivation(const ArithmeticParams& params,
+ const RuntimeShape& input1_shape,
+ const float* input1_data,
+ const RuntimeShape& input2_shape,
+ const float* input2_data,
+ const RuntimeShape& output_shape,
+ float* output_data) {
+ const int flat_size =
+ MatchingFlatSize(input1_shape, input2_shape, input2_shape);
+ for (int i = 0; i < flat_size; ++i) {
+ output_data[i] = ActivationFunctionWithMinMax(
+ input1_data[i] - input2_data[i], params.float_activation_min,
+ params.float_activation_max);
+ }
+}
+
template <FusedActivationFunctionType Ac, typename Scalar>
void Concatenation(int concat_dim, const Scalar* const* input_data,
const Dims<4>* const* input_dims, int inputs_count,
@@ -1813,6 +1860,26 @@ void Concatenation(int concat_dim, const Scalar* const* input_data,
}
}
+template <typename Scalar>
+void Pack(int dim, const Scalar* const* input_data,
+ const Dims<4>* const* input_dims, int inputs_count,
+ Scalar* output_data, const Dims<4>& output_dims) {
+ TFLITE_DCHECK(IsPackedWithoutStrides(output_dims));
+ int outer_size = 1;
+ for (int i = dim + 1; i < 4; i++) {
+ outer_size *= output_dims.sizes[i];
+ }
+ Scalar* output_ptr = output_data;
+ const int copy_size = FlatSize(**input_dims) / outer_size;
+ for (int k = 0; k < outer_size; k++) {
+ for (int i = 0; i < inputs_count; ++i) {
+ memcpy(output_ptr, input_data[i] + k * copy_size,
+ copy_size * sizeof(Scalar));
+ output_ptr += copy_size;
+ }
+ }
+}
+
// TODO(prabhumk): This is the same as the optimized implementation.
// TODO(prabhumk): The quantized implementation of concatentation isn't fully
// quantized as it takes scale as a floating point value. This should be fixed
@@ -3467,9 +3534,9 @@ inline bool Reduce(const In* input_data, const int* input_dims,
const int* output_dims, const int input_num_dims,
const int output_num_dims, const int* axis,
const int num_axis, int* input_iter,
- Out reducer(Out current, const In in), Out* output_data) {
+ Out reducer(const Out current, const In in),
+ Out* output_data) {
// Reset input iterator.
- TFLITE_DCHECK(input_num_dims > 0);
for (int idx = 0; idx < input_num_dims; ++idx) {
input_iter[idx] = 0;
}
@@ -3485,11 +3552,16 @@ inline bool Reduce(const In* input_data, const int* input_dims,
return true;
}
-inline bool ResolveAxis(const int num_dims, const int* axis, const int num_axis,
- int* out_axis, int* out_num_axis) {
+inline bool ResolveAxis(const int num_dims, const int* axis,
+ const int64_t num_axis, int* out_axis,
+ int* out_num_axis) {
*out_num_axis = 0; // Just in case.
+ // Short-circuit axis resolution for scalars; the axis will go unused.
+ if (num_dims == 0) {
+ return true;
+ }
// o(n^2) is fine since out_num_axis should be really small, mostly <= 4
- for (int idx = 0; idx < num_axis; ++idx) {
+ for (int64_t idx = 0; idx < num_axis; ++idx) {
// Handle negative index.
int current = axis[idx] < 0 ? (axis[idx] + num_dims) : axis[idx];
TFLITE_DCHECK(current >= 0 && current < num_dims);
@@ -3515,7 +3587,7 @@ inline bool ReduceSumImpl(const In* input_data, const int* input_dims,
const int output_num_dims, const int* axis,
const int num_axis, int* input_iter,
Out* output_data) {
- auto reducer = [](Out current, const In in) -> Out {
+ auto reducer = [](const Out current, const In in) -> Out {
const Out actual_in = static_cast<Out>(in);
return current + actual_in;
};
@@ -3524,6 +3596,24 @@ inline bool ReduceSumImpl(const In* input_data, const int* input_dims,
output_data);
}
+template <typename T>
+inline bool InitTensorDataForReduce(const int* dims, const int num_dims,
+ const T init_value, T* data) {
+ size_t num_elements = 1;
+ for (int idx = 0; idx < num_dims; ++idx) {
+ size_t current = static_cast<size_t>(dims[idx]);
+ // Overflow prevention.
+ if (num_elements > std::numeric_limits<size_t>::max() / current) {
+ return false;
+ }
+ num_elements *= current;
+ }
+ for (size_t idx = 0; idx < num_elements; ++idx) {
+ data[idx] = init_value;
+ }
+ return true;
+}
+
// Computes the sum of elements across dimensions given in axis.
template <typename T>
inline bool Sum(const T* input_data, const int* input_dims,
@@ -3532,17 +3622,9 @@ inline bool Sum(const T* input_data, const int* input_dims,
const int* axis, const int num_axis_dimensions, bool keep_dims,
int* temp_index, int* resolved_axis) {
// Reset output data.
- size_t num_outputs = 1;
- for (int idx = 0; idx < output_num_dims; ++idx) {
- size_t current = static_cast<size_t>(output_dims[idx]);
- // Overflow prevention.
- if (num_outputs > std::numeric_limits<size_t>::max() / current) {
- return false;
- }
- num_outputs *= current;
- }
- for (size_t idx = 0; idx < num_outputs; ++idx) {
- output_data[idx] = T();
+ if (!InitTensorDataForReduce(output_dims, output_num_dims, static_cast<T>(0),
+ output_data)) {
+ return false;
}
// Resolve axis.
@@ -3557,6 +3639,61 @@ inline bool Sum(const T* input_data, const int* input_dims,
num_resolved_axis, temp_index, output_data);
}
+// Computes the max of elements across dimensions given in axis.
+template <typename T>
+inline bool ReduceMax(const T* input_data, const int* input_dims,
+ const int input_num_dims, T* output_data,
+ const int* output_dims, const int output_num_dims,
+ const int* axis, const int64_t num_axis_dimensions,
+ bool keep_dims, int* temp_index, int* resolved_axis) {
+ T init_value = std::numeric_limits<T>::lowest();
+ // Reset output data.
+ if (!InitTensorDataForReduce(output_dims, output_num_dims, init_value,
+ output_data)) {
+ return false;
+ }
+
+ // Resolve axis.
+ int num_resolved_axis = 0;
+ if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis,
+ &num_resolved_axis)) {
+ return false;
+ }
+
+ auto reducer = [](const T current, const T in) -> T {
+ return (in > current) ? in : current;
+ };
+ return Reduce<T, T>(input_data, input_dims, output_dims, input_num_dims,
+ output_num_dims, resolved_axis, num_resolved_axis,
+ temp_index, reducer, output_data);
+}
+
+// Computes the prod of elements across dimensions given in axis.
+template <typename T>
+inline bool ReduceProd(const T* input_data, const int* input_dims,
+ const int input_num_dims, T* output_data,
+ const int* output_dims, const int output_num_dims,
+ const int* axis, const int64_t num_axis_dimensions,
+ bool keep_dims, int* temp_index, int* resolved_axis) {
+ // Reset output data.
+ if (!InitTensorDataForReduce(output_dims, output_num_dims, static_cast<T>(1),
+ output_data)) {
+ return false;
+ }
+
+ // Resolve axis.
+ int num_resolved_axis = 0;
+ if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis,
+ &num_resolved_axis)) {
+ return false;
+ }
+
+ auto reducer = [](const T current, const T in) -> T { return in * current; };
+ return Reduce<T, T>(input_data, input_dims, output_dims, input_num_dims,
+ output_num_dims, resolved_axis, num_resolved_axis,
+ temp_index, reducer, output_data);
+}
+
// Computes the mean of elements across dimensions given in axis.
// It does so in two stages, first calculates the sum of elements along the axis
// then divides it by the number of element in axis.
@@ -3649,38 +3786,6 @@ inline void Mean(const T* input_data, const Dims<4>& input_dims,
}
template <typename T>
-void Sub(const T* input1_data, const Dims<4>& input1_dims, const T* input2_data,
- const Dims<4>& input2_dims, T* output_data,
- const Dims<4>& output_dims) {
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_dims, input2_dims, &desc1, &desc2);
-
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- for (int b = 0; b < ArraySize(output_dims, 3); ++b) {
- for (int y = 0; y < ArraySize(output_dims, 2); ++y) {
- for (int x = 0; x < ArraySize(output_dims, 1); ++x) {
- for (int c = 0; c < ArraySize(output_dims, 0); ++c) {
- output_data[Offset(output_dims, c, x, y, b)] =
- input1_data[SubscriptToIndex(desc1, c, x, y, b)] -
- input2_data[SubscriptToIndex(desc2, c, x, y, b)];
- }
- }
- }
- }
-}
-
-template <typename T>
void TensorFlowMinimum(const T* input1_data, const Dims<4>& input1_dims,
const T* input2_data, T* output_data,
const Dims<4>& output_dims) {
diff --git a/tensorflow/contrib/lite/kernels/internal/tensor_utils.h b/tensorflow/contrib/lite/kernels/internal/tensor_utils.h
index 5160e22307..82f4503127 100644
--- a/tensorflow/contrib/lite/kernels/internal/tensor_utils.h
+++ b/tensorflow/contrib/lite/kernels/internal/tensor_utils.h
@@ -124,6 +124,10 @@ void Sub1Vector(const float* vector, int v_size, float* result);
// Fill vector with 0.f.
void ZeroVector(float* vector, int v_size);
+// Multiply all elements of vector with a scalar.
+void VectorScalarMultiply(const int8_t* vector, int v_size, float scale,
+ float* result);
+
// Clip elements of a vector using a abs_limit value.
void ClipVector(const float* vector, int v_size, float abs_limit,
float* result);
diff --git a/tensorflow/contrib/lite/kernels/internal/tensor_utils_test.cc b/tensorflow/contrib/lite/kernels/internal/tensor_utils_test.cc
index aa0d49ae4d..372a6efec5 100644
--- a/tensorflow/contrib/lite/kernels/internal/tensor_utils_test.cc
+++ b/tensorflow/contrib/lite/kernels/internal/tensor_utils_test.cc
@@ -32,6 +32,22 @@ TEST(uKernels, ClipTest) {
{0.0, -0.5, 1.0, -1.5, 2.0, -2.0, 2.0, -2.0, 2.0, -2.0})));
}
+TEST(uKernels, VectorScalarMultiply) {
+ constexpr int kVectorSize = 29;
+ static int8_t input[kVectorSize];
+ for (int i = 0; i < 29; ++i) {
+ input[i] = static_cast<int8_t>(i - 14);
+ }
+ const float scale = 0.1f;
+ std::vector<float> output(kVectorSize, 0.0f);
+ VectorScalarMultiply(input, kVectorSize, scale, output.data());
+ EXPECT_THAT(output,
+ ElementsAreArray(ArrayFloatNear(
+ {-1.4, -1.3, -1.2, -1.1, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5,
+ -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5,
+ 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4})));
+}
+
TEST(uKernels, IsZeroTest) {
constexpr int kVectorSize = 21;
static float zeros[kVectorSize] = {0.0};
diff --git a/tensorflow/contrib/lite/kernels/internal/types.h b/tensorflow/contrib/lite/kernels/internal/types.h
index 737cfb69c9..c44698b677 100644
--- a/tensorflow/contrib/lite/kernels/internal/types.h
+++ b/tensorflow/contrib/lite/kernels/internal/types.h
@@ -119,6 +119,8 @@ class RuntimeShape {
// larger shapes are separately allocated.
static constexpr int kMaxSmallSize = 4;
+ RuntimeShape& operator=(RuntimeShape const&) = delete;
+
RuntimeShape() : size_(0) {}
explicit RuntimeShape(int dimensions_count) : size_(dimensions_count) {
@@ -135,6 +137,20 @@ class RuntimeShape {
BuildFrom(init_list);
}
+ // Avoid using this constructor. We should be able to delete it when C++17
+ // rolls out.
+ RuntimeShape(RuntimeShape const& other) : size_(other.DimensionsCount()) {
+ if (size_ > kMaxSmallSize) {
+ dims_pointer_ = new int32[size_];
+ }
+ std::memcpy(DimsData(), other.DimsData(), sizeof(int32) * size_);
+ }
+
+ bool operator==(const RuntimeShape& comp) const {
+ return this->size_ == comp.size_ &&
+ std::memcmp(DimsData(), comp.DimsData(), size_ * sizeof(int32)) == 0;
+ }
+
~RuntimeShape() {
if (size_ > kMaxSmallSize) {
delete[] dims_pointer_;
@@ -191,6 +207,16 @@ class RuntimeShape {
}
}
+ // This will probably be factored out. Old code made substantial use of 4-D
+ // shapes, and so this function is used to extend smaller shapes. Note that
+ // (a) as Dims<4>-dependent code is eliminated, the reliance on this should be
+ // reduced, and (b) some kernels are stricly 4-D, but then the shapes of their
+ // inputs should already be 4-D, so this function should not be needed.
+ inline static RuntimeShape ExtendedShape(int new_shape_size,
+ const RuntimeShape& shape) {
+ return RuntimeShape(new_shape_size, shape, 1);
+ }
+
inline void BuildFrom(const std::initializer_list<int> init_list) {
BuildFrom<const std::initializer_list<int>>(init_list);
}
@@ -208,7 +234,25 @@ class RuntimeShape {
return buffer_size;
}
+ bool operator!=(const RuntimeShape& comp) const { return !((*this) == comp); }
+
private:
+ // For use only by ExtendFrom(), written to guarantee (return-value) copy
+ // elision in C++17.
+ // This creates a shape padded to the desired size with the specified value.
+ RuntimeShape(int new_shape_size, const RuntimeShape& shape, int pad_value)
+ : size_(0) {
+ TFLITE_CHECK_GE(new_shape_size, shape.DimensionsCount());
+ TFLITE_CHECK_LE(new_shape_size, kMaxSmallSize);
+ Resize(new_shape_size);
+ const int size_increase = new_shape_size - shape.DimensionsCount();
+ for (int i = 0; i < size_increase; ++i) {
+ SetDim(i, pad_value);
+ }
+ std::memcpy(DimsData() + size_increase, shape.DimsData(),
+ sizeof(int32) * shape.DimensionsCount());
+ }
+
int32 size_;
union {
int32 dims_[kMaxSmallSize];
@@ -234,7 +278,9 @@ inline tflite::Dims<4> ToRuntimeDims(const tflite::RuntimeShape& array_shape) {
// Gets next index to iterate through a multidimensional array.
inline bool NextIndex(const int num_dims, const int* dims, int* current) {
- TFLITE_DCHECK_GT(num_dims, 0);
+ if (num_dims == 0) {
+ return false;
+ }
TFLITE_DCHECK(dims != nullptr);
TFLITE_DCHECK(current != nullptr);
int carry = 1;
@@ -261,7 +307,9 @@ inline bool NextIndex(const int num_dims, const int* dims, int* current) {
inline size_t ReducedOutputOffset(const int num_dims, const int* dims,
const int* index, const int num_axis,
const int* axis) {
- TFLITE_DCHECK_GT(num_dims, 0);
+ if (num_dims == 0) {
+ return 0;
+ }
TFLITE_DCHECK(dims != nullptr);
TFLITE_DCHECK(index != nullptr);
size_t offset = 0;
@@ -364,6 +412,7 @@ inline int RequiredBufferSizeForDims(const Dims<4>& dims) {
// arrays.
inline int MatchingFlatSize(const RuntimeShape& shape,
const RuntimeShape& check_shape_0) {
+ TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount());
const int dims_count = shape.DimensionsCount();
for (int i = 0; i < dims_count; ++i) {
TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i));
@@ -374,6 +423,7 @@ inline int MatchingFlatSize(const RuntimeShape& shape,
inline int MatchingFlatSize(const RuntimeShape& shape,
const RuntimeShape& check_shape_0,
const RuntimeShape& check_shape_1) {
+ TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount());
const int dims_count = shape.DimensionsCount();
for (int i = 0; i < dims_count; ++i) {
TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i));
@@ -385,6 +435,7 @@ inline int MatchingFlatSize(const RuntimeShape& shape,
const RuntimeShape& check_shape_0,
const RuntimeShape& check_shape_1,
const RuntimeShape& check_shape_2) {
+ TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount());
const int dims_count = shape.DimensionsCount();
for (int i = 0; i < dims_count; ++i) {
TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i));
@@ -397,6 +448,7 @@ inline int MatchingFlatSize(const RuntimeShape& shape,
const RuntimeShape& check_shape_1,
const RuntimeShape& check_shape_2,
const RuntimeShape& check_shape_3) {
+ TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount());
const int dims_count = shape.DimensionsCount();
for (int i = 0; i < dims_count; ++i) {
TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i));
@@ -601,14 +653,74 @@ struct PoolParams {
int stride_width;
int filter_height;
int filter_width;
- // uint8, etc, inference params.
+ // uint8, etc, activation params.
int32 quantized_activation_min;
int32 quantized_activation_max;
- // float inference params.
+ // float activation params.
float float_activation_min;
float float_activation_max;
};
+enum class BroadcastableOpCategory : uint8 {
+ kNone,
+ kNonBroadcast, // Matching input shapes.
+ kFirstInputBroadcastsFast, // Fivefold nested loops.
+ kSecondInputBroadcastsFast, // Fivefold nested loops.
+ kGenericBroadcast, // Fall-back.
+};
+
+// For Add, Sub, Mul ops.
+struct ArithmeticParams {
+ // Shape dependent / common to data / op types.
+ BroadcastableOpCategory broadcast_category;
+ // uint8 inference params.
+ int32 input1_offset;
+ int32 input2_offset;
+ int32 output_offset;
+ int32 output_multiplier;
+ int output_shift;
+ // Add / Sub, not Mul, uint8 inference params.
+ int left_shift;
+ int32 input1_multiplier;
+ int input1_shift;
+ int32 input2_multiplier;
+ int input2_shift;
+ // uint8, etc, activation params.
+ int32 quantized_activation_min;
+ int32 quantized_activation_max;
+ // float activation params.
+ float float_activation_min;
+ float float_activation_max;
+
+ // Processed output dimensions.
+ // Let input "a" be the one that broadcasts in the faster-changing dimension.
+ // Then, after coalescing, for shapes {a0, a1, a2, a3, a4} and
+ // {b0, b1, b2, b3, b4},
+ // broadcast_shape[4] = b0 = a0.
+ // broadcast_shape[3] = b1; a1 = 1.
+ // broadcast_shape[2] = b2 = a2.
+ // broadcast_shape[1] = a3; b3 = 1.
+ // broadcast_shape[0] = b4 = a4.
+ int broadcast_shape[5];
+};
+
+template <typename T>
+inline void SetActivationParams(T min, T max, ArithmeticParams* params);
+
+template <>
+inline void SetActivationParams(float min, float max,
+ ArithmeticParams* params) {
+ params->float_activation_min = min;
+ params->float_activation_max = max;
+}
+
+template <>
+inline void SetActivationParams(int32 min, int32 max,
+ ArithmeticParams* params) {
+ params->quantized_activation_min = min;
+ params->quantized_activation_max = max;
+}
+
} // namespace tflite
#endif // TENSORFLOW_CONTRIB_LITE_KERNELS_INTERNAL_TYPES_H_