aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/contrib/eager/python/examples/notebooks/3_training_models.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'tensorflow/contrib/eager/python/examples/notebooks/3_training_models.ipynb')
-rw-r--r--tensorflow/contrib/eager/python/examples/notebooks/3_training_models.ipynb485
1 files changed, 0 insertions, 485 deletions
diff --git a/tensorflow/contrib/eager/python/examples/notebooks/3_training_models.ipynb b/tensorflow/contrib/eager/python/examples/notebooks/3_training_models.ipynb
deleted file mode 100644
index 84f1d031d4..0000000000
--- a/tensorflow/contrib/eager/python/examples/notebooks/3_training_models.ipynb
+++ /dev/null
@@ -1,485 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "k2o3TTG4TFpt"
- },
- "source": [
- "# Training Models\n",
- "\n",
- "In the previous tutorial we covered the TensorFlow APIs for automatic differentiation, a basic building block for machine learning.\n",
- "In this tutorial we will use the TensorFlow primitives introduced in the prior tutorials to do some simple machine learning.\n",
- "\n",
- "TensorFlow also includes a higher-level neural networks API (`tf.keras`) which provides useful abstractions to reduce boilerplate. We strongly recommend those higher level APIs for people working with neural networks. However, in this short tutorial we cover neural network training from first principles to establish a strong foundation."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "3LXMVuV0VhDr"
- },
- "source": [
- "## Setup"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- }
- },
- "colab_type": "code",
- "id": "PJ64L90aVir3"
- },
- "outputs": [],
- "source": [
- "import tensorflow as tf\n",
- "tf.enable_eager_execution()\n",
- "tfe = tf.contrib.eager # Shorthand for some symbols"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "eMAWbDJFVmMk"
- },
- "source": [
- "## Variables\n",
- "\n",
- "Tensors in TensorFlow are immutable stateless objects. Machine learning models, however, need to have changing state: as your model trains, the same code to compute predictions should behave differently over time (hopefully with a lower loss!). To represent this state which needs to change over the course of your computation, you can choose to rely on the fact that Python is a stateful programming language:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- }
- },
- "colab_type": "code",
- "id": "VkJwtLS_Jbn8"
- },
- "outputs": [],
- "source": [
- "# Using python state\n",
- "x = tf.zeros([10, 10])\n",
- "x += 2 # This is equivalent to x = x + 2, which does not mutate the original\n",
- " # value of x\n",
- "print(x)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "wfneTXy7JcUz"
- },
- "source": [
- "TensorFlow, however, has stateful operations built in, and these are often more pleasant to use than low-level Python representations of your state. To represent weights in a model, for example, it's often convenient and efficient to use TensorFlow variables.\n",
- "\n",
- "A Variable is an object which stores a value and, when used in a TensorFlow computation, will implicitly read from this stored value. There are operations (`tf.assign_sub`, `tf.scatter_update`, etc) which manipulate the value stored in a TensorFlow variable."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- }
- },
- "colab_type": "code",
- "id": "itxmrMil6DQi"
- },
- "outputs": [],
- "source": [
- "v = tfe.Variable(1.0)\n",
- "assert v.numpy() == 1.0\n",
- "\n",
- "# Re-assign the value\n",
- "v.assign(3.0)\n",
- "assert v.numpy() == 3.0\n",
- "\n",
- "# Use `v` in a TensorFlow operation like tf.square() and reassign\n",
- "v.assign(tf.square(v))\n",
- "assert v.numpy() == 9.0"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "-paSaeq1JzwC"
- },
- "source": [
- "Computations using Variables are automatically traced when computing gradients. For Variables representing embeddings TensorFlow will do sparse updates by default, which are more computation and memory efficient.\n",
- "\n",
- "Using Variables is also a way to quickly let a reader of your code know that this piece of state is mutable."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "BMiFcDzE7Qu3"
- },
- "source": [
- "## Example: Fitting a linear model\n",
- "\n",
- "Let's now put the few concepts we have so far ---`Tensor`, `GradientTape`, `Variable` --- to build and train a simple model. This typically involves a few steps:\n",
- "\n",
- "1. Define the model.\n",
- "2. Define a loss function.\n",
- "3. Obtain training data.\n",
- "4. Run through the training data and use an \"optimizer\" to adjust the variables to fit the data.\n",
- "\n",
- "In this tutorial, we'll walk through a trivial example of a simple linear model: `f(x) = x * W + b`, which has two variables - `W` and `b`. Furthermore, we'll synthesize data such that a well trained model would have `W = 3.0` and `b = 2.0`."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "gFzH64Jn9PIm"
- },
- "source": [
- "### Define the model\n",
- "\n",
- "Let's define a simple class to encapsulate the variables and the computation."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- }
- },
- "colab_type": "code",
- "id": "_WRu7Pze7wk8"
- },
- "outputs": [],
- "source": [
- "class Model(object):\n",
- " def __init__(self):\n",
- " # Initialize variable to (5.0, 0.0)\n",
- " # In practice, these should be initialized to random values.\n",
- " self.W = tfe.Variable(5.0)\n",
- " self.b = tfe.Variable(0.0)\n",
- " \n",
- " def __call__(self, x):\n",
- " return self.W * x + self.b\n",
- " \n",
- "model = Model()\n",
- "\n",
- "assert model(3.0).numpy() == 15.0"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "xa6j_yXa-j79"
- },
- "source": [
- "### Define a loss function\n",
- "\n",
- "A loss function measures how well the output of a model for a given input matches the desired output. Let's use the standard L2 loss."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- }
- },
- "colab_type": "code",
- "id": "Y0ysUFGY924U"
- },
- "outputs": [],
- "source": [
- "def loss(predicted_y, desired_y):\n",
- " return tf.reduce_mean(tf.square(predicted_y - desired_y))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "qutT_fkl_CBc"
- },
- "source": [
- "### Obtain training data\n",
- "\n",
- "Let's synthesize the training data with some noise."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- }
- },
- "colab_type": "code",
- "id": "gxPTb-kt_N5m"
- },
- "outputs": [],
- "source": [
- "TRUE_W = 3.0\n",
- "TRUE_b = 2.0\n",
- "NUM_EXAMPLES = 1000\n",
- "\n",
- "inputs = tf.random_normal(shape=[NUM_EXAMPLES])\n",
- "noise = tf.random_normal(shape=[NUM_EXAMPLES])\n",
- "outputs = inputs * TRUE_W + TRUE_b + noise"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "-50nq-wPBsAW"
- },
- "source": [
- "Before we train the model let's visualize where the model stands right now. We'll plot the model's predictions in red and the training data in blue."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- },
- "height": 293
- },
- "colab_type": "code",
- "executionInfo": {
- "elapsed": 1210,
- "status": "ok",
- "timestamp": 1527005898290,
- "user": {
- "displayName": "",
- "photoUrl": "",
- "userId": ""
- },
- "user_tz": 420
- },
- "id": "_eb83LtrB4nt",
- "outputId": "3873f508-72fb-41e7-a7f5-3f513deefe38"
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEDCAYAAAA2k7/eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlgU1X2xz/pAhRautCWUsCwWVlcUHHGBUFQcSg7uM8P\nFLUICo4VpygObihI3UdmUHBB0IGZQbEgFNGCqKgMolV2pKylCy1pukDp+n5/3LxmaUsDTUjSns8/\nbZKXd09C+b7zvvfccw2apmkIgiAITR4/TwcgCIIgnB9E8AVBEJoJIviCIAjNBBF8QRCEZoIIviAI\nQjNBBF8QBKGZENDYE+Tk5JCUlER+fj7+/v7cdtttTJgwgcLCQhITEzl27BidOnXijTfeICQkxBUx\nC4IgCOeAobF1+Hl5eeTn59OrVy9OnjzJ2LFj+ec//8mnn35KWFgYCQkJLFy4kKKiIh5//HFXxS0I\ngiCcJY22dKKioujVqxcAbdq0oXv37uTm5pKWlsaYMWMAGDNmDF999VVjhxIEQRAagUs9/MzMTPbs\n2cNll13GiRMniIyMBNRFoaCgwJVDCYIgCGeJywT/5MmTPPLII8ycOZM2bdpgMBhcdWpBEATBBbhE\n8CsrK3nkkUcYNWoUN910EwDt2rUjPz8fUD5/REREg+eRtj6CIAjuo9FVOgAzZ86kR48e3HPPPTXP\nDR48mE8//ZRJkyaxcuVKbrzxxgbPYzAYyMsrdkVIbiUqKkTidCESp2vxhTh9IUbwrTidodGCv23b\nNlavXk1cXByjR4/GYDCQmJhIQkICjz76KJ988gmxsbG8+eabjR1KEARBaASNFvwrr7yS3bt31/na\n4sWLG3t6QRAEwUXISltBEIRmggi+IAhCM0EEXxAEoZkggi8IgtBMEMEXBEFoJojgC4IgNBNE8AVB\nEJoJIviCIAjNBBF8QRCEZoIIviAIQjNBBF8QBKGZIIIvCILQTBDBFwRBaCaI4AuCIDQTRPAFQRCa\nCSL4giAIzQQRfEEQhLOk0GTi84R7+XbIDXyecA+FBSZPh+QULtnTVhAEoTnx7YzHuDflUwyAlv4z\nizEwfNFiT4fVIJLhC4IgnCWhhw9hsPxusDz2BVwi+DNnzuTaa69lxIgRNc/Nnz+fAQMGMGbMGMaM\nGcM333zjiqEEQRA8TqHRiGb5XQMKjV08GI3zuMTSGTt2LOPHjycpKcnu+YkTJzJx4kRXDCEIguA1\nXJ/8OosxEHr4EIXGLlyf/JqnQ3IKlwh+v379OHbsWK3nNU2r42hBEATfJjQ8wic8e0fc6uF//PHH\njBo1iqeeeori4mJ3DiUIgiA0gNsE/+677+arr74iJSWFyMhI5s6d666hBEEQXMLRjAwW9u3FWmN7\nFvbtxeGMDE+H5FLcVpYZERFR8/vtt9/O5MmTnXpfVFSIu0JyKRKna5E4XYsvxOmNMb53xQhmZh1T\n5Zalx5h3ww08cfSop8NyGS4TfEe/Pi8vj6ioKAC+/PJL4uLinDpPXp73Wz9RUSESpwuROF2LL8Tp\nTTEWmkx8O+MxQg8fIjory67cMtZk8po4z4SzF0+XCP706dPZsmULZrOZG264gWnTprFlyxZ2796N\nn58fHTt25Pnnn3fFUIIgCC7FdhHVXFSZpcHyM8vGqWgKuETwX3311VrPjRs3zhWnFgRBcCu2i6ju\nBp4JDKR7QACZ4RH839dfezAy1yMrbQVBaNbYLqK6AOgaP4L4w7lMSt+NsXt3T4bmcqSXjiAIzRpf\nXUR1LojgC4LQrPHVRVTnglg6giA0WXy1jbG7kAxfEIQmi6+2MXYXIviCIDQZbGvqC41Ggg9k+GQb\nY3chgi8IQpPBMaOfE9vRrq7eV9oYuwsRfEEQfB49s/dbn2qX0V8QEcHiq/7odAWOyWRmxoyNHD7c\nFqOxkPffHwX4uzv884YIviAIPk2hycS/B1/HJVnH2In9StnK7heelWc/Y8ZGUlLGAwbS0zWmTFnO\n/PnD3RK3JxDBFwTBJzmakUHquOFE5mTTpbqaAcD1wDygQ1AQ1UOGnnVN/eHDbcHmHuHgwWDXBu1h\nRPAFQfBJUscNt3a2BJYDdwG9gRNDhp5TNY7RWEh6uvUeoWvXEhdG7HlE8AVB8BkKTSY2PDqVgB+/\nI8ZstvPrg1HCvz22I3ec42rZ5OTBwFKLh1/EggUjqapyTezegAi+IAhejz4pq23aQBuzmWHAAuz9\n+t8CA8mPH8Edya8RGn5uXS7tu7w3vS1aRfAFQfBq9ElZR/vmbuBZwGgwkN0hlqEr19C5a7dGjdXU\nJ22ltYIgCF7NtzMe4xKL2IPVvrkAuAgwjBzDpPTdjRZ7aPqTtiL4giB4NaGHD1GC1WDR7ZvktqFs\nbH85r2eMJiHhUwoKzI0ey2gstBtJJm0FQRDciF5u2anARGZ4BC169eIBlI3TBsuk7MbNPJ60Sdkv\nuQa279CApSxaNOasx7NdbNWhw0mGDn2P7OxImbQVBEFwF/rEbNba1cysqKjZSPyF6mo+GzWW0MOH\nOGHsUjMp62i/HD7cttZK2eTkwYSHh51xXEffftSopaxffyMAERHes/euKxDBFwTBK9D74HwO9u0R\nCs3E11FT71gzbzQW1RJvZ7L+ui4cTRWXCP7MmTP5+uuvadeuHatXrwagsLCQxMREjh07RqdOnXjj\njTcICXFuZ3VBEJo+u7Zt48vRQ+ladpqDBgNRrVtjAIqxL7fMrKfE0rFmPjl5EHfcsY2zFe+6LhxN\nFZcI/tixYxk/fjxJSUk1zy1cuJBrrrmGhIQEFi5cyDvvvMPjjz/uiuEEQWgCfDkmntllp5XMahpP\nnzyJBsQDy4BC/MhoFcawxcvqfH94eFit7P1cxLuuC0dTxSWC369fP44dO2b3XFpaGh999BEAY8aM\nYfz48SL4giCwa9s20sbG0+10qZ110x14JSwMf8LZZO7HKt6G0+Hs/8dSFi3q69S5z0W867pwNMS5\nzBV4A27z8E0mE5GRkQBERUVRUFDgrqEEQfAQZyN8+qTs6VUruUjTOIS9dZMNxAwczN8Pjyc9fXTN\n+87GUz8X8T4XzmWuwBvwuknbqCjf8PklTtcicbqW8xXn1Kmf2wlfy5bL+fe/76p1nPnECVbc1J/e\nmZmUAEOBpajOltHAAYOBsBtvZMz7i1g3ZZ2dLRMXV4qfXxUPPZTKwYPBdO1azIIF8UREnJ+Muq7v\nMisrHNu5gqyscJ/423Cb4Ldr1478/HwiIyPJy8sjIsK53ha+UAIVFeUbpVoSp2uROGuzb18QtsK3\nb18QeXnFtTL/+PIVzMjMtGuN0BUYDsxqFcRfjuQCUFEFs2dfT1mZ1ZaZPXsQ99+/qubCsnWrRlnZ\nUubNG+R2W6W+7zI21oTt/UlsbIFH/zacvdi4TPA1+65DDB48mE8//ZRJkyaxcuVKbrzxRlcNJQiC\nl1DfJKlueRgwcUH6FPBbb+fXtwF+A7a0CuLmVevszlmXLVNX6aQnbRVfneh1ieBPnz6dLVu2YDab\nueGGG5g2bRqTJk3iL3/5C5988gmxsbG8+eabrhhKEAQvoi7hKzSZCN34D17hUfIoYS4VLKu29+t3\nderEHWnfOd3Vsq4Liyfr58/XXIGrcYngv/rqq3U+v3jxYlecXhAEL8VW+ApNJj57YAKl337NDSgp\n7mD5GY+yccotO1FNfn8RuXknSUhY6ZQlU9eFJSlpQ7Opn3cVXjdpKwiCb/LtjMeI/fZr7sKayb9k\n+RkG3AkstuxEFRYRwr33fe60JaNfWPS5gTvu2Far742v2CqeRARfEASnqasMs9BUwOJxCVyanU4+\nUIgSeAOqffFLQPuwMAwDB3N98muYTGamTv2c9evB1pLJyPBvMOOvr++NyWQmKcn36uLPNyL4giA4\nja3g/pqeT+DqP3BJ9UHmY83ql6E2J9GAn4Hc9pezLCqRblRzHX4251iGrbNvMh1mx44nOVPGX59v\n76t18ecbEXxBEJxGF1wDJ5jM5fyjOrNWs7NC4G3gd/zZenUS3/74ol0LY6toK2c/KKiCIUPgwIE4\nsrLOPAnrOHl7/PguDhzowaZNucDnqE488U26AVpjEMEXBKEW9a2g7djhGMb0eG5mHa3R6mx2to6r\nWcUPwCrC9uRbXjEDqaxfD+HhO4GBNe8oKytl69Z8evUKtjuTPglr36++nPbtnyY39yrgJFlZUxg7\ndgFm85PY3mMYjZVn/BzNFRF8QRBqoSySEcA60tPD2bp1CY/cW0nv1GfpDeQBuWDX7Kwc2A2s4l+W\nV04C+ZbfU4E7KS01UFqqERT0DKWlLYGZVFcbyMrSqK5+gVGjate2O9o1YWGvACNrYi0o6ITtPUZY\n2GmSk2+u873N3eoRwReEZsDZZrrKElkH3Ik/WxmSNYaCOdX0B0qAB4BVwNNAJ9QFIB9Y1vZeKNoO\n/Aj8iWuuWU6LFktZvx5KS62iXFraDyXS1ucKC411irGjbw/tsL0TCA8/Smmp9fHAgQE1n6059bp3\nBhF8QWgG1JXpnqk1gdFYyK/pp4nnEv7ATiKBUGCA5edyIALoDOwliNfIJCzsM7744g/MmfOz5Zyr\nSU4eTnh4GAkJn5KSYmv8nLT8tBXuzDpjd/Ttr7mmmhYtrHcCM2eOYs6cule9Nqde984ggi8ITRDH\njP7AgTY01JrgxImX+emnYsrKuhKifcxf2EAw0BdqGp6lAnehWiMUA7tpxRtsB8Ixm1vx7LPf0aJF\na8s41nYrtgunjh/fRVbWFEs8y/DzKyYm5gQrV1ptGltqL7q6pdbdyaJFRiff27xr9UXwBaEJ4ijm\nsbFzcJwQdbQ7Nm8uAm0ioxjFzeykEHgCa06+HNCnVf8H/MKlrGUssMvyTDybNy+kqOhBHD1z2xW5\nBQVXMmvWOvbtC8JorCQ5Of6M9lJj2hj4agsEdyGCLwhNEEcxj4jowlVXnbk1gb92kkR6MM/yzCrs\nnfM2wK/Atxh4mXuB14A1qJ6X6hynToXSkGceHh7Gv/99l090Hm1qiOALQhNEedcFqInXlvz++06O\nHGmFn18nOnSoAuztjuh2+7k07Q36Y5XrEuzLLb8DXmYDMAhQ1TLV1aUUFS1BOfoltG5toqiocZ65\nlFK6DxF8QfBRMjIOM27cKgoKOhEefpSVK0fRtavyspOTB7N16wKyslR9elnZGMrKlgHxpKauZfPm\nLwgOziW8bTsuP/4SxvTddMZe5IcCs4COwC78mc8e4D+Wo4rp1CmW7t0rSUmZgC7w/fq9xZ49cy0x\nZTJzZm1fXm+toCyd2oIupZTuQwRfEFzI+cxOx41bVSPopaUaI0c+w9VX9yArK5zYWBMREUa7lasQ\nhFoDO4PiIhN9i/7ENVk/0Qb4G/AKcDvKq28DbAPKgHXczKqaupyLgRGAxv79s3jvvTuxnRQtLw+0\ni2nOnKW1JlQbEnQppXQfIviC4EKczU6dvTDUd5zJZCYnR8O2nUBeXsuasdUuTHOxN2X2AH3wYz/j\nuYgYNHoDpZYjwlBVOCGWM5qBv/Moyqu3LacEMHD6tCrBtP18Q4akoZorpALBbNqUQ0GB2e6z2Qt6\nIZs25TJkSFrN55NSSvchgi8ILsTZ7NTZC4PjcWVl7wGQlpZLdfVMbNsJaFqE3dgFBbG0ajWL06fb\no0Q4GH/SmcooWgNXo8wZ/Qy3AWuBTGB/y1DSus7B//dDVFUtAyqBY8Bky/mV+Dt+PiXWa8HSJNls\nHk5S0lK71saHDlUCHwPDgLWYzY+Tnm79HqSU0n2I4AuCC3E2O63vwmCb0cfE5PH99/arUX/80Q+z\neSLUallWTnCwieJi69iqdcFsYmJe4FTO10xhA3HAPuBFrEK/BJiLMmwOGAL5vPsLxPVpz6fJg3n0\n0dWkpgLkoMR+Hcrw2QU8SEzMJ3YtjWfOvJJNm/6H2Xzmjpb6pC+0q3WslFK6DxF8QXAhzmanHTpk\nk57+L5SBUkSHDrZ7waoeNtAeVd9uFfGiohzL744ty/IpKTlOy5azKC/vhqYFoaZdDbSqzOMeNjCX\nusstw1E9cF7yv4viqo9hv4Hd+zVSU5+ksjIEg8FAy5a5lJXNQ9PiwLLQKiZmPgZDJCkp92N7pzJw\noL/dqlr9oud4kevS5UKMxsI6jxXcgwi+ILgQ57PTQLDbG+o9TCazpc1viuX1AcD1wDwgBmhBdXWU\n5fjrUHl5NKqTzd1o2mbKyu5CtTK7k0BWkMjtdM2HFtRfbvk9MI+HoeoKm6MKKS9vA1wClHD69KXA\nBJt3LeP06WNkZ3fA8U7l3/++krouenXd/Yh9c35xu+APHjyY4OBg/Pz8CAgIYMWKFe4eUhC8nuzs\nSGyFMjs7khkzNmI2P255vgBVUdMH8ENJdjzqYvAekAHMwX4dbIjl8XX48xBTeJvLLM9uwb7c8kng\nAiCdIBaRALyB/YYka1G1O/r5P8T+viAEaFeniNd30bMV97i4UmbPHiT2zXnG7YJvMBhYunQpoaGh\n7h5KEHwG+4VRbTh+fCdVVRdhFdV1wAzL4+G0aJFEefkBVG/KAqAH9gIcDBThzxb+j6uJRTnt+j1E\nf+ApoCfKfd9LIPN4CUjEKub6VuOlqEla2/PnYX9fUMw111Rb2hA7l6HbintUVIistPUAbhd8TdOo\nrq529zCC4HHOpgbfcWFUVtYITKZZwDisjQysgtuyZSTl5UlYBVffHlx/vJcW/EoiH2EE2qLuC/Qz\nhANGlNjPYxgwGnXXsAw4hf1W48ss77I9fy7qziIAP78sbrklnDfeGC4Zuo9xXjL8+++/H4PBwB13\n3MHtt9/u7iEFwSMkJq4hNbUt4E96egDl5Z/z4Yf/V+ex4eFhREf3tlsYdfp0F5RfHw38jvLvwwGN\n4uJg7DPuzsALQCcCWMOdfEJHqJmYreuSsA94jf0og8d2/mA2yh5S7REgwTKOyvZbtjxAWdlUoAug\nMWKErHz1Vdwu+MuXLycqKgqTycTEiRPp1q0b/fr1q/f4qKgQd4fkEiRO1+LNcZ44Yeahh1I5eDCY\nrl2LWbAgnoiIsFrHfPVVNqA6RYLGjz++WvO5Tpww88ADKWzapAF5DBgQRocO2PnfaguRGTaP56E8\n/BIgG3v5Pgp0pxWf8hc+IRi4FPtLQk9Urm4GdhDCAn4BuqPyfNsjL0c1QHseqEB1vDcAd9Kp0zx+\n/fVxpkxJZd++X8jP38vhw0amTl1d5/dwNnjzv7ktvhKnM7hd8KOiogCIiIjg5ptvZvv27WcUfF/w\n9XzFf5Q4XUNCwqqaUsmtW4P57rt/sHHjBMLDw2r62eTktKO6ugu2QlpcHMK+fUctG4Cssus5k5Ky\nBPgNeBWIRAl4H+yFuDd6GwNYgLVBcQkBHGIqM7kQ5ei3pnb1zS6gCEjmJ9Qq226Wcxc5HKkvv7rC\n8rt1nLCwzlRV+TN//nASElaSnj6DzEx9Edi5Z/re/m+u40txOoNbBb+0tJTq6mratGnDqVOn+O67\n75g6dao7hxSEs8IZ3z0jwx94B1XXspOsrF4MGrSEjRsn2PWzUatHrUJaWdmKQYOWEh3d27K61FbM\nNVT3Guvyp8DAX6ioGIO9ZBuAdJSFcyd+7Gc0/ehOUU0bYw1l7tyLtQ/O98AxgviI7aisvrvlqF7A\nXtQU7oVAS9RkrS781cDdNWfu3n1pzfcgPW58H7cKfn5+PlOnTsVgMFBVVcWIESPo37+/O4cUhLPC\nmRYHJtNhVCHjcvQtQbKyNJKSllJQYFuHPgyVscehWo/dR1bWf8nK8kdNehage/JwANs+OFBJUFB7\n2rV7kZycSNS0613AZtQdwAECuZ1EVnARqqmZ7eWjI+oeIBz4BQMvk4Ta+1XP6kNRtf0VwHPAEWAp\nEAXMx8+vkN69+9K5cxHwHtnZkbJdYBPErYLfuXNnUlJS3DmEIDQKZ7LWdu3iLJOr9hOnq1ZVomm7\nsWb1eulxgeXnRqADavJ1OJCEqoTRd4PNRU3QLgBKKSp63tJL/hmU4P8XmI4BE4MZSD920hvV0cYP\ne1PGhDJqnuIOVOb+PKp/zjKgHFWRU2zzGb5HZfnqDDExc9mwwdrKWL/zueOObTV3PrJIyveRlbZC\ns8aZrLVbt5Ns365qz21lVrUviEOJahCqQUEgyjL5K9a+MwuAKajFSvYNz2AkyqefZxnNgLJdDgNt\n8eN1pjKDi6gkFHUPEYqa2l2GtbNlJvAmM1C1OXrzhDCUPbPaMsYCwsJ2YzYPx/Hi1a5dnN1nru/O\nR6pzfBsRfKFZo2etGRmtMZn2kZFhJCHhUzsv33qMH/v3P83p00bUQqRhwHpU24NiVLZ+P8qqWYeq\naTegxHYJyj5xXK2q/x6MkvA2qJLMSIJYwiNs4VpqbyLeFdiBWob1Bd1YxR2oOwioPX2rHgcGmtiy\nZQJJSUvZtCnHIvzqmG7dTtl9L+LXN01E8IVmjb5w6J57PmbHji5kZYWwY0cOP/zwHuXlFwD5XHNN\nMG+8MYJZs75jx47nsbY+eB3ohxL7oSj/Xq+jz0ZZKmGWn0eAVjiuVlVoKKPmYcBAC/L4Cw/QAlUh\nb9s8Qd9E/DCQg4G5bEU1MzuFaocQgrJwnkDdfRxH1c8vY8CAkJrPW1BgJimpfntG/PqmiQi+0OQ4\n212nTCYzX32VhbWG/l8cP/4Mutilpi6jRYuNZGWFY93cIwNV6a7L8XxUhYttHf0ylKWi96XRPfVi\nlOtegrJgwlGZfSEB/I9HeYCXUFOqtvcDbVDSvhmYxzxURq8Bn6CqbabYjP0CMBbdVoqN3cE//zm+\n5jM3tEJW/PqmiQi+0OQ42z1RZ8zYSEVFP6zyGoKj9ZKSchz4BiW5T6KyedvVqi+gJktt31cIvI+q\njLH11FehBD8Y/QLhzxbGE04HrF1yjlG7q2UJLfgHPwArLec5iTJ42tuN3bZtB6677hNLtY2Z5OTx\ntS56Z7owSsuEpokIvtDkcPSfMzL87TbpePLJK5k792ebTUayUTX2+i5MjguTTKiKmj4o774QVSrp\n2Opgj8P7TqKmWG1ragpQ9fVRwDEMHORmRtGXHXRB1ebonW3uRuX/eqOFDYRyqtfrxBauo23bzhQV\n7aBduzgOHy6nqGgnaq5AjT1oUIsGBVs2C29+iOALTQ6r/1wIrGXv3kPs2KGqY9LTNdasmUVl5eya\n15V4ZwMXofZvLUJZNsrDV4+fw75LDdiLeybKdHkS1aYsFHjA8vM9VK+aXqhFVOpcLXmTKXSnDfZe\n/RKsPStPAj8Bb/MhsbGZpG+6tdbn7dv3LYqKpqAvuwoK+onk5IRaxzkiE7PNDz9PByAIrsRkMlNe\nXkFY2AcEBLwCDKWiwr7LTGVlZ8vjVNRkaxFqknMsSozboiY6W6BE+yrss/k+KL9cL4FcjppwDUDZ\nQS1R+XmY5fho1H+1/6F8/+W04s88yqNcBfzB4ewRqPqeA0ApLXibn4AJhIZ2r/Mzq5LKcJTFNJKe\nPS8/45yFjtFYiLrEgEzMNg8kwxe8nrOZhH300S9Yt05tuWetbdFw3A5Q/QxGTWr2xl5y+6Hq4/X3\nV1PbqgkDLkbZKDp6q4IdDsf/BDwGrCKA9fyFJfRE4xDKvsHh6L3Ad0AyM7Dtf1lYmFHnZ7auE1DH\nXXjh6TN9nTXIxGzzQwRf8HrOxmv+8UfbLvB6bcsAVHVMIcq6Kbc8PoaycRzr1k/avL8Y5bnvRmX9\nB1CLqqC21/+75Zi7gVmoydTjwP34cZw7uI8LqKpZLfsAyux5DGsPnP8BvxDLWraj7gqWoyZ9Aykp\naUtBgbnWxc5RuBcsGElVVcPfq0zMNj9E8AWv5+y8Zj1710V4p817v0cJcg9U1h2E6lLZBiW90ZZj\nJlse630oo4CHULZJAaqRWm/LuZdg7SMfClwLfInK9A1AJa14iGmspSWq4YFt82Mj8E/LmX/AwFv8\nRHT0ajiul4BqqN2n/CkqaklS0sZaIu0o3BERvtHhUTj/iOALXo+zi4BMJjMtWxZjbTlcSfv2p+jQ\noYqYmFOsWxeNmjgNQVXbPIG1cuYN1H+HauADVNOx6Vjl+VUgFtXorA/KytmL/cbeT6IuAN2Bv+HP\nVhKYRDBVhKHW49ree8SiMv1iYBVhFF74MqN676CkJJy0tGVAlkMMS2RiVWgUIviC1+Ho2c+ceSWO\nXrPtMR06ZAOB/PCDH2ZzT/SOM4GBc7jiigt4440refTRNahM3LZ2XpffdcCzNs/PcXjdgLqABKP6\n4kRZXg/HWk+Ti6rq6QQYaM10pvI6ccAh1KXAcQeqXagcftfVf+XzVbNqPv+QIWmoLQhXO8QQjtFo\nbvwXLDRbRPAFr8Pesy9g69YFREf3tpuwTUhYaXPMv7AX8uXAXVRUXEpqan9++WW+peVwFUpiQdkx\noGrsq7AX1hhqL3tqgbXR2WzUHMCtKBtHb5u8kAC+ZzjzuAhqvPo4y1nuxtp4YR/wHZEcaD+Jrz+c\nbPf5rXc09s3aYmN3kJw8HkE4V0TwBa/D3rNfR1bWk2RlWSds580bxKZNucBnqLr2AOBDy/GjUR0r\n56JWn75ETs5L2Fe5t8Bq59S1+2suKovXNwjMBfoC/0JZOlGoOv3lqHmAUYCBEN5iCjsJwbbxMDxt\n+WlEratNAl7hCoYOfYCvLRuB22Jt1uaPyTSXdu3i6NbtVJ2rZQXhbBDBF7wG3aZRu0Ppq17bYJt9\n792rcdllb1NW9kfURGknVL2LrdeeidqnNQJrWwMsP09TO6PvgrU12V7L43hUnX4R9nbPMlRWfxKV\nvz+PH/uJJ5o+VDAX1SvT9uzdUReAjqgan9dYQlBQFR9+OK7O70GqZwR3IYIveA22Vg5otG37EuXl\nJzl9Wm8ZUMC+fXuprn4Re4G3ldeLUNOhQ1HevGPVTjFqktb2Ob2RgV4FvxtlEd2Ftbe8fv5y1F3E\nt0B/gunNFPbQBWtdTrHD2fcAJ4C5PI1a2KURGvqi6744QXASEXzBa3AsvywpiaK6uhxYCORjMBRS\nXd0fewFuR+3e7yFY+9G/i/1WIUUoF/0pVO69H2XLrEb5+WGoCdqXUP89CrHtUaNkPRQD2VxPF66h\niDhUBX6X0UVuAAAgAElEQVRLyxHxWHtiHgR+IJhv+NYS0xLgd/r0EWtGOP9IawXB45w4YSYhYSUH\nDuzFdql/dfUhVOVLS+AhNK071kVSYF3s9CyqNn4Z1lYJuhV0G9bSS/189wDXAPcB/ijhH2455/2o\n7cCfQOXl01F2zyrURSKHAJ5kEg9yDUX0Rjn8D6LuJf6Gala8C7WI6oer/8qivbsIC/sSVc4ZCEzn\nxIm62yQIgjtxe4b/zTffMGfOHDRNY9y4cUyaNMndQwpegG3ZZExMHgZDJdnZHepsjfDQQ6kWK8ex\nX/x0rJt+L0fVzt+OypL1TUNOowTeH+XNL0CJ/SFUZh6GyvR160evrNmCEnRQUv0qtdsi2/aoAX/2\ncieP0Qkl246LqK6wRP078D3h7G8/hc/evIvw8DAGDowmJcW6w5T0rRE8gVsFv7q6mtmzZ7N48WKi\no6O59dZbufHGG+neXbKbpo6jH6+EfDTp6Rrl5e/QokXrmjr7I0d0K0fvF78ENXG6DjWRql8AilCZ\nfABqQrYUJdIXUbsscwLwIsryse1cqS+gMqIyeX3B1KWoUk1be2h/zWMD+dxOEp1Qa2mzqb2Iapcl\nor/zHPA05GrMmbOURYuM0rdG8ArcKvi//fYbRqORjh07AjBs2DDS0tJE8JsBGRn+WCtfirGVx82b\n8ygq6g74k54eQIcOv6AmQnWhPWY51rZ0ch5KmF8GrkZZO9NRG4E4ZubBKHHvbvndtsGZXrnTEmuZ\nZXeUXD+OtavNVmASBhYxhme4kZyada/hqBoix0VUR4BlrETdbahY9JWxUnkjeANuFfzc3Fw6dOhQ\n87h9+/Zs377dnUMKHka3cvbu3U99PeSLiqqwzchPnnyRsLBXMJs7oCpkOlN7pWs0ag9Z2wqd5aiL\nQ0vs5fc3lGUzHXVn8aHl+TxUM7OHgR9Qwr4AlZf/EVv7BvJoxTKmMZN5DiPehSoYnYOq9P8dSOav\nQDLWuxn1WcW6EbwJtwq+pmkNH+RAVFSIGyJxPRJn3Uyd+rnFyvkMW8E2GNqiaUtQAh2DdW/YYIqK\nqhk6tA2pqX6orQIN1M6hg1Btix07YZajBFvvn3MUlbFnoCyhLOy3F1mG6pXzrOW5EahGadZiSj/2\n8Sce4BKUfeM4Iqj7h2LgZ+C+las5tKyYgwdX07GjCU2rICtrNV27lrBgwUgiIs7/34ov/H36Qozg\nO3E6g1sFPyYmhqysrJrHubm5REdHn/E9vtDlLyrKN7oReiLOffuCUNKod3pUQqtpLVFTnX1Q2fda\nrFn+cNLSnqBt21YUFenyOgwl4hEosR9qeY/tRWAr1lYJlUCZ5fl01DKnO1HzAbaSHYK6IDjePagW\nyi1ZwZ9ZSRRK7B0bJ+9EXbIOA/P4KzCPqsX1t2uuqjr/f9O+8PfpCzGCb8XpDG4V/EsuuYQjR45w\n7NgxoqKiWLNmDa+99po7hxRsUOWOq5zaOMRVqD4wBajVrh+ibJTTqHLIO1HSeT3wH2xFt7z8QgwG\n6ySpyqFjUcuWdGtoKMoaCkNV1kSiBL81+mbg1sVYRcBbqAzfceGVfZ8cP78f8av+HxN5kWiUQXQZ\nSuyHYu/qlwDbCWAZe1AXDqSDpeAzuFXw/f39mTVrFvfddx+apnHrrbfKhO15xFrueP42qU5OHszW\nrQvIyrLtJvMSyh/XbZxAVAXMIpS9UwSUU1b2V1Stew+sE7ftUNXtF6JEvhR1Z6B78Ccs4ziutu1v\nGddoOacR5d/HoCqBVJ+cmBgThTmnmcrrNVO8rbGK/TqsG5OUAIb7JnHqxLWQ0s0ynvj0gu/g9jr8\nAQMGMGDAAHcPI9TBwYPBOL9xyJlxdpvB8PAwoqN7k5VlK8DtgV9RkqnbOONQojsCdVF4EXVR6Im6\nIPwN6wVjBipTvxh157Ac1YuyBEgE3qb2att1KMG3nW69HVXW+RtgwJ9D9Mx5mb5Qk9lXAL9YzqqL\n/fdArrErr//8ExVVgRQUmJESS8EXkdYKTZiuXYvZurXhjUOcwXGbQb2WPiOjNSbTXiIiutC9eyXJ\nyYOJicnDXoBboeri11HbT9d/jwIWo5oRnLa8pxRVNtkVtSh8JKoLpm255nLUBWW25Ryhlvd84zBW\nBaq0cwYQTkve5EFeJghVgW9bxT8Pa9u0X4G+H3zMjcNGEGbZSUpKLAVfRQS/CbNgQTxlZWfORPXM\nvS7hts3gHfvc/PBDMWbzg+gymZX1Pjt2BLFmzVpURfoLqJbCe1GLnlRFTm0/HcvvIVgbmC1Bib6+\n4YgJlYNrqDsAx7qZwyg//3eU7/8ZyhKy9sDx89tD9+4XcOD3KQzj31yE2tMqHzUlbHvGCNQ9QC6w\ns/f/MX2YbR2/IPguIvhNmIiIhjNRxxWxWVnL2bFjZK1NRxy3GSwpsb0AFKJE/lkqKx27wFdYfgaj\nJmuXo7L3LagFSgtQ3vpfLOcyoKpt9K0D9bJJtayp9sYkO1Fi74eaatVQ62BNGAwLMBgKCAgopLz8\nSTJ/f5XH+DctsC/UdOyGvxdY3fmv9L7iYj4Su0ZoQojgN3McM3clzKvsNh3ZsuUFIiO70bLlLMrK\nugIFVFaWohqSrUMJdBeH8/RC9YzvgzJJ/FENyu5CyeoW1MpWfd1qqOW9GsqnL0RV46iWxMHBwbRu\nncHJkyGcPDkLuBJ1FzAFa0Y/E1sZ17TOaFoorQK2MLG8KxEUcrHlXbaRhqIWUYUDu6KiefS7//FE\neIQLvl1B8C5E8Jsp1s1Gcqg94Wm/yjUnpx05OX7AH1AZ9RSsbvdc6l4odQRrqeQIm2MvRpVq9gJS\nULtP9QdmWc5/EjVluhblxa8FWtO2bQGXXRZJaupk9L48+lixsVmUlMTY1PAb0Dcab8F7TDr1Fn1Q\nS7JKLKPbRhqGarV22YrV3DZgoAu+XUHwTkTwmxG2lTbHj+8kK+shlOwtIyTkFOXlBygr80ctWtJ3\nnApFudlTsIq33mCgN9YLg75QKhrlpV+OfR6t7yk7EiXYek2+vvq1o+U1nWLgH+hZe1aWRnb2U8BS\nlGe/gKCgIMLDs4mIMFJdfYCiIpvaevZzEy25iHIuR80QBAKnLL+/iJrizQUyW7Zk8jdb6Ny1G4LQ\nlBHBb0bY+/WjgPctrxRQXNwG5YPbNv3VO0teQG3bR29yZrtQqhglpzEoJ9w2j24DVGP1823PV4i6\nSNger0u09ThNuxp1UVCWTXi4ucZ6ggJiY+cSHd2bnN8/5s8nV9ADlc3bVuC8iqrSH44ylHq/9TZT\n7ri7MV+rIPgMIvhNGMeVthkZAdgLbQFK0O+zPLbfzi8oKJLQ0AxycsB+Zep2AgK+oby8M0pC26EE\nXpU8qvLKu7GuUf0NdRFohVoEFYSSXF2GQ1H5ti7HJSg7Zz72F4GdqBYIYfj5taekRP8cAOFEtA1j\n4P4JtDhZXNPw7ANq32f8AmwA/mgptxSE5oIIfhPmgQdSSElR1S7p6RrR0S9gK6ABAcFUVtq2Frbv\nHBMenkV09CXk5NyAEu8yoAXV1X+mvPxfqIlafU3qfJTYg8r030bZNDstj5+ynONFVEbvKO6foTJ6\n2wtBEQbDU5bM/iQwGVXeeSctWhykqKhnTbxBPMWf9syhB8qmsZ3yrVXT87fnmPlIoku+Y0HwJUTw\nmzCbNtlPvppMkSi/3AAcoqoqFNiBVWSHoiZXewO7aN26DXv2bANyUPZNN5QL/jFK7HeiRPtt7Gvs\ny7BfHDUHqxVkQElxLPbibsDffzdVVXrXSwNt215ARUUwpaW23n4psbFzadu2M3v2DMOfF3iAp4lE\nTfmWoNbTrkXdY4xCFYgagX1Az7feZqRYOEIzRQTfx6ivxUFdzzvWo1RXF6AmX5cBT6BpytYJCHgG\n6EBl5WGUtbINuICMjN/RtBmo0kt9kdW/UBuRLMde1Gdh3SzcfkMSgyHC0iq72CaeocTEvMjp07EY\nDCauvroNYCQ19YGacw4atJStW49SWmr9DLGxOaSnTyMh4VP279nCgzxNR2qvvT2NMpbyLaMa3nqb\nv4rQC80cEXwfo74WB5s2VWI2twRuID09FFjK1Ve3JDX1JZS1coyIiALy8x0nTcMJDu6C2TwRtcI1\nEHgMNUmql17G2hyvi7njxGtfVG/6LNRCKqtI33ijgV275pKV1cVyvjhiY/ewceM9hIeH1bSgLSgw\n06KF/cpgs7mQMWPmUlDQifDwTFauHMnRjAx6bnyEKyiqKcB0XHt7CDUzkN82lAlfbpIKHEFABN/n\naKjFgV4yefhwW7p00YBpNa/17fsOO3a8YKmpt9opRUU5qOy8LepPwlY+9SZluoAXYW2LYOuOH0Jd\nWKpQ3S5fom3bKAYNakFy8jAAkpI2cvhwT4uYj6/VfK2uHjXh4WGkp0+refzh669wdO7zRKNaIDiu\nHNCAHwEzEP3W20yXrF4QahDB9zEcWxyoCpnaJZNGYxHHjkXYvZafH0OfPhXk5LRCTZqGAK2orn4I\nlQ8/i6qksfXWT6ImVZfTqlUZoaEZ5OYuQS2YeslyjmKUp1+NukNQq2mvu+49OwFvTMOxXdu28Wn8\nYDprGiGWT51nGd22Z/1m4GhQax7/+nvJ6gXBARF8H0H36A8caENs7BxLk7MqysurSE21XgDCwvYw\ncGABTz55Bbfeuhpb8TYai9i06TQwFaugv4+qfAFlyVyCtY/8LtS+sGHAnUREzKWg4EJUnxtFQMBz\nVFY+jaqLWYtqoaA2B8/OjnTJZ1/98VL2JD7MGyhhn24T/VxUfVBHVGfLuLfe5nHJ6gWhTkTwfQTH\nJmeXXvoe0IKjR1sTGzuXdu3i6NbtFMnJdxIeHkZCwkoyMyej574xMb9SXh5JUVE7lH0TjxLyAlQd\n/nKs1TS6NdQH+CcBAZFERBwnK2sq6uKgoQt8dXVny/kqsDY8U6tnjcZKwPle+nXxzovPU/LmK/S0\njOLY2bIT6rK0u20od4lXLwhnRATfwzgrho7e/Y8/+mE2Wy8AV11l3c3KZDKzaVMlqi7+LgCOH99h\n6UNjK+h3Uv8kbAVwjKFDI/jww7sZMiSN48f15z9E7Vg1nerqcMv5PrR7f1jYaZKTbwZqTzQ7s/NW\nWspnbEmYQBuse8sOpfZWJzuB61es5o/SA0cQGkQE38M4K4a1vXt9az8A+92sZszYiNlchbJWQoAi\nqqvD7I4PCqrA3382JSX+qBW2O7H37gNRxY7v2Yy/FvssXu+pY8DP7xjV1db4Bg4MqLlwOV6sGtp5\n6z8LF3D0bzO4Cvu2CMtRl6VZqLqhA35+jFi3kd59Lz/j+QRBUIjgexhnxVDV1VtLFsvL29h590Zj\nUc3dwvr1oNab2u4rOwfb3HjIEPjii3KsneGvB55BbczdApVPG2p8+OTkwWza9CVms2MBJIDGLbdE\n1Cqp1HG8WNW389aWDRv45s7RdEXtcWVfza9G247aB6vlW28zQ7x6QTgr3Cb48+fP5z//+Q/t2rUD\nIDExUfa2rQNnxdCxZLGumvWkJFuf374vjiqvXEZY2GkGDgwgOXkQ69dX2RwTDlyFqrixdrLU4wkP\nD2PgQH9SUmwXQe0gOrqamJh8gHptKceLVV07b+kWzlUood9B7f2xvgcKWrfmwY1SgSMI54JbM/yJ\nEycyceJEdw7h8zgjhnWhXwD0rP6OO7ZZetvrXWRKsG5Q0gb4BX//Mq65xkhy8gjCw8MID8+yW8Wq\nO+V610nHeGrHOr5mgjgl5X7qs6XOtAfsrm3bWDlyCK0qKojCauH0x9pBPwzVmu1SaYsgCI3CrYKv\nVmoKZ+JMYujMhO6jj37BunVKbK37wd4DDMVgeBlNe9Hy2giqql4lNXUKLVooQV65cpRlFWsHNO0A\nXbv2IC5udZ2LovRY580bVBNTUtIGkpMHn7VHD8q++e6uMcRpGq1QbdG+xv5+oyewBwiZ+wp/u39S\ng+cUBOHMuFXwP/74Y1JSUrj44ot54oknCAkJcedwTQZd6Otql+B4cfjxRz9sxTYg4DQXX/yZpea+\nu4PnrpqS6YLctavRbhWrM9Q1yWw0ak7ZUjqrP17KvsSHa/bK0uvpY7G3cHYAwdNncKeIvSC4hEYJ\n/sSJE8nPz6/1fGJiInfffTcPP/wwBoOB119/nblz5zJnzpwGzxkV5RsXBXfFeeKEmZtu+pjMTH17\nQGs1TFZWeK1xDYYT2MpkSEgxv/zyIACjRy+289z1n3FxpWcV/4kTZh56KJWDB4PZv78a2wtMVlY4\n69Zdz5Qpyzl4MJiuXUtYsGAkERG1z3/49995+7rr0PLyuBb7GYYY1KaFy1BtEQ4FBjLhhx+49Mor\nnY7zfNDc/z5diS/ECL4TpzM0SvA/+OADp467/fbbmTx5slPH5uUVNyak84Le7MsdJCSsIjPTdutA\na7uE2NiCWuNefXUbUlP1LpXFXHGFH6NHL7HYQBUMHfoemZlhnDixj4gII927L2X27EHk5RU7vQYg\nIWGVzWSw/d61sbEFVFX5M3/+8Jrjq6pq/ztu2bCBNXeOph2qyfJOVF2QXsV/AHVZy42MYsSaL7nN\nMinrTX8P7vx3dyW+EKcvxAi+FaczuM3SycvLIyoqCoAvv/ySuLg4dw3VpFB2i307ML1dgu0Eqi7W\nmZnRxMbutWm10NbOchk1ailpabcAt9Qay9k1APYe/TDCwl6hS5cLnZpkLjSZ+PD2MZz67Rcisd9A\nUe+8vxXVxrjrW2/zkEzKCoLbcJvgv/zyy+zevRs/Pz86duzI888/766hmhQxMXnArVhbIvzGpk33\n1Mq8HVst6CtthwxJw9kJVGcnW+1LR0MZOLA9ixbd2OBnKTSZePe6fgSeyKcDEIf9fUsUkI5aQnaD\nbDcoCG7HbYKfnJzsrlM3aQyGSlS/GmXRXH55O6daLehi7Wxd/9kce7alo4UmEx/eOoLAHdvpgloC\n1prabYx/B4au38TAmwf4xG2zIPg6stLWy8jO7oCavtQff1bncfWJta04x8WVMnt2/eLsrJCfqXTU\nkS0bNrDqztG0R7VAsF3nexfWNsbfA/1XrJa2CIJwHhHB9zIam3XbinNDE05nI+QNUWgy8cn/3U7Z\nT/8jGrVm19a+CQcWoBZRHbj8Sh5Y/gmh4REuGVsQBOcQwT+POFMV8+STV7J1q76l31FmzhxV57lc\nKdaNpdBk4tUr+hB56iRdgQyUjWNr32QBtGzFdau/kKxeEDyECP55xJmqmLlzfyYr60nAQGmpxpw5\nS1m0yOiJcJ1CX0TVDvsKnGewt286zn1FFlAJgodp8oJfV1ataZzzhhyNwZmqmHNpU+AJ0lI+Iz1h\nAj1QmyN2wN7CuQDV1fJXoK9U4AiCV9DkBb+urBo46w05XIEz/vzZVNl4gkKTifWJD3MkdY1da4SZ\n2Fs4+1FCP12EXhC8hiYv+PVnzOc/i3amKuZcu2eeD45mZLDwun6EVVfVqqmPRO2EG4US+/C/PSdZ\nvSB4GU1e8OvOmM+u2ZercGai1ZsmY3UKTSa+eHgSpWnrCUNtObgT1XxZb41QBJQBmZf2JfG/n0kF\njiB4IU1e8OvPmL0zi/Y2jmZk8J8Bf2RuRTnLgenozZZVa4RoVEYfcNUfeOCj/4jQC4IX0+QFv76M\n2duyaG9k17ZtpA4dRFfq3ua8N/CjwY/79hwQoRcEH6DJC75w9hzNyODzUX/C73guc4FXULZNMbW3\nHBz6xUYRe0HwEUTwBTv0rL43qtfNEdTq2GUooX8JaAvkRbfn9tVfyN6yguBDiOALgEXoRw7hgooK\nLgGGoerrXwKmAGtRk7SFLVpy7efrZbWsIPggIvjNHL0C50Taeru6erXHFrRHZfeHUZ0tbxOhFwSf\nRQTfDTi7k5SnSUv5jG8SJhAFGKlrjy3YB1RFRnHXmi/FvhEEH0cEvwHqEu+GthNzdicpT1JoMvFz\nwgQ6A0+gsnjbCdm9wGZUVi/2jSA0DUTwG6Au8f7sswlnfI8398PRWyPkfLWei4BAVKTxKBvnJJCN\n2nLwZulXLwhNCj9PB+DtnIt4G42FqDwZvKkfztGMDN699CJOpK7huYoKgoBjqEjDgDtRi6hCbhzC\ntL2H+OOAgZ4MVxAEFyMZfgOcSzMzb+yHU2gy8emga7m2vAwT1qx+CfA00BXYHxjI7d9tFa9eEJoo\njRL8devWMX/+fDIyMlixYgV9+vSpee2dd97hk08+wd/fn6eeeor+/fs3OlhPcC7i7S39cMwnTvDf\ne+6hcPO3VBYXM1vTMAAfY83qpwFzAgOpvOkW7ntjviyiEoQmTKMEPy4ujvnz5/P000/bPZ+RkUFq\naipr164lJyeHiRMnsn79egwGQz1n8l68RbzPlqMZGSy89goiNI0eqEVU24FLUTX2r6I6XO5v2Yp7\nf9sjQi8IzYBGCX63burWX9M0u+fT0tKIj48nICCATp06YTQa+e2337jssssaM5zgJLp9E6VpdrtQ\nPY0S/FDADJyIiua2z9eL2AtCM8EtHn5ubi59+/atedy+fXtyc3PdMZTgQKHJxL8HX0e306VUYF9b\n3xVYDByL7ci9GzeL0AtCM6NBwZ84cSL5+fm1nk9MTGTw4MF1vscx4wectnMaqnH3FrwtTvOJE6Q8\n8ACZa9Yws6LCzqvXM/x9QI9Ro3j4/fcJi/Ausfe277M+JE7X4Qsxgu/E6QwNCv4HH3xw1ieNiYkh\nOzu75nFOTg7R0dFOvTcvr/isxzvfREWFeE2cu7Zt48sx8XQ9Xcpx7FfMDgNeADqixF7fW7aiyru+\nZ2/6Ps+ExOk6fCFG8K04ncFldfi2Wf3gwYNZu3Yt5eXlHD16lCNHjnDppZe6aijBhi/HxDP7dCn3\no1bM7sW6AiAU8IvtyIC9h5h+vEi2HBSEZk6jPPyvvvqK2bNnU1BQwOTJk+nZsyfvvvsuPXr0YOjQ\noQwbNoyAgACeeeYZn6zQ8WaOZmSQOm443U6X2vn03VFtEsqBnE6duCPtO/HqBUEAwKDVZbh7EF+5\nffJUnIUmE9/OeIyDa1fzXEUFy1BdLXWffhYQGhZG62uu488fLaGiKtAjcZ4NvnTbLHG6Bl+IEXwr\nTmeQlbY+gi702qYNtDSb6YZ9D5xS4ECrIG5eta6m/01YhG/8sQqCcH4QwfcRvp3xGPemfGqXydv2\nwJkT25G/pO/2ZIiCIHg5IvhejJ7Vhx4+hHbogJ1X3xO1G1V7Pz+yYzowdOUazwUqCIJPIILvxdhm\n9Y419dlhYcQMHMz1ya/JpKwgCE4hgu9l7Nq2jS9G/wljWRm5wALgblRN/SthYXTv0o1CYxfGiNAL\ngnCWiOB7GV+OiefFsrKaTH4ZkIry6SMHDub6RYs9GZ4gCD6MCL6X0a3stJ1XHwKYgoJYPGQo1ye/\n5sHIBEHwdUTwPYztxGyh0cjuwBZo5dYMvxioHjKU4ZLZC4LQSETwPYxduWX6z/x94CCe+vF7jGVl\nHDcYaHX9QMZIZi8IggsQwfcwoYcP2Vk4nQsLuftonidDEgShiSKbmJ9HCk0mPk+4l2+H3MDnCfdQ\nWGCi0Gi02e4cCo1dPBihIAhNGcnwzyOO9s1iDFyf/DqLMVg8/C4yMSsIgtsQwT+PONo3oYcPERoe\nIROygiCcF8TSOY+IfSMIgieRDN8NOJZaXp/8OqHhEWLfCILgUUTw3UBdXv3wRYvFvhEEwaOIpeMG\n6vLqBUEQPI0IvhsQr14QBG9ELB03IF69IAjeSKMEf926dcyfP5+MjAxWrFhBnz59ADh27Bjx8fF0\n69YNgMsuu4xnn3220cH6CuLVC4LgjTRK8OPi4pg/fz5PP/10rdcuuOACVq5c2ZjTC4IgCC6kUYKv\nZ/CapjVwpCAIguBp3DZpm5mZydixYxk/fjw//fSTu4YRBEEQnKTBDH/ixInk5+fXej4xMZHBgwfX\n+Z7o6Gi+/vprQkND2blzJw8//DBr1qyhTZs2DQYUFRXiRNjnD/OJE6Q+9BDBBw9S3LUr8QsWAN4X\nZ31InK5F4nQdvhAj+E6cztCg4H/wwQdnfdLAwEBCQ0MB6NOnD507d+bQoUM1k7pnIi+v+KzHcyef\nJ0yyLqLaupXFZZVM/OwTr4uzLqKiQiROFyJxug5fiBF8K05ncJmlY+vjm0wmqqurATh69ChHjhyh\nc+fOrhrqvCKLqARBaCo0atL2q6++Yvbs2RQUFDB58mR69uzJu+++y08//cTf//53AgIC8PPz4/nn\nn6dt27auivm8Umg0oqX/XLPloCyiEgTBV2mU4N90003cdNNNtZ4fMmQIQ4YMacypvQZZRCUIQlNB\nVto2gCyiEgShqSC9dARBEJoJzVLw69pbVhAEoanTLC2d+vrVC4IgNGWaZYYvpZaCIDRHmqXgS796\nQRCaI03e0qlrf1kptRQEoTnS5AW/Pr9ePHtBEJobTd7SEb9eEARB0eQFX/x6QRAERZO3dMSvFwRB\nUDR5wZfWCIIgCIomb+kIgiAIChF8QRCEZoIIviAIQjNBBF8QBKGZIIIvCILQTBDBFwRBaCY0SvCT\nk5MZOnQoo0aNYtq0aZSUlNS89s477zBkyBCGDh3Kd9991+hABUEQhMbRKMHv378/a9asISUlBaPR\nyDvvvAPA/v37SU1NZe3atSxatIjnnnsOTdMaOJsgCILgThol+Ndeey1+fuoUffv2JScnB4ANGzYQ\nHx9PQEAAnTp1wmg08ttvvzU+WkEQBOGccZmHv2LFCgYOHAhAbm4uHTp0qHmtffv25ObmumooQRAE\n4RxosLXCxIkTyc/Pr/V8YmIigwcPBmDBggUEBgYyfPhwgDrtG4PBUOs5QRAE4fzRoOB/8MEHZ3x9\n5cqVbNq0iSVLltQ8FxMTQ3Z2ds3jnJwcoqOjnQooKirEqeM8jcTpWiRO1+ILcfpCjOA7cTpDoyyd\nb775hnfffZcFCxbQokWLmucHDx7M2rVrKS8v5+jRoxw5coRLL7200cEKgiAI545Ba0T5zJAhQ6io\nqIMzjrUAAATvSURBVCAsLAyAyy67jGeffRZQZZkrVqwgICCAp556iv79+7skYEEQBOHcaJTgC4Ig\nCL6DrLQVBEFoJojgC4IgNBNE8AVBEJoJXiv47733Hj179sRsNns6lDp58803GTlyJKNHj+b+++8n\nLy/P0yHVyZn6HXkT69atY/jw4fTq1YudO3d6Ohw7vvnmG/70pz9xyy23sHDhQk+HUy8zZ87k2muv\nZcSIEZ4OpV5ycnKYMGEC8fHxjBgxwq6c25soLy/ntttuY/To0YwYMYL58+d7OqR6qa6uZsyYMUye\nPLnhgzUvJDs7W7vvvvu0QYMGaQUFBZ4Op05KSkpqfl+yZIn29NNPezCa+tm8ebNWVVWlaZqmvfzy\ny9orr7zi4YjqJiMjQzt48KA2fvx4bceOHZ4Op4aqqirtpptu0jIzM7Xy8nJt5MiR2v79+z0dVp1s\n3bpV27VrlzZ8+HBPh1Ivx48f13bt2qVpmvo/NGTIEK/9Pk+dOqVpmqZVVlZqt912m/brr796OKK6\n+eCDD7Tp06drDz74YIPHemWGP2fOHJKSkjwdxhlp06ZNze+lpaU1PYW8jfr6HXkb3bp1o0uXLl7X\nZO+3337DaDTSsWNHAgMDGTZsGGlpaZ4Oq0769etH27ZtPR3GGYmKiqJXr16A+j/UvXt3jh8/7uGo\n6iYoKAhQ2X5lZaWHo6mbnJwcNm3axG233ebU8Q2utD3fbNiwgQ4dOnDRRRd5OpQGef3110lJSSEk\nJMRrb01tWbFiBcOGDfN0GD5FXX2htm/f7sGImg6ZmZns2bPHaxdlVldXM3bsWI4cOcKf//xnr4xT\nT46Li4udOt4jgl9ff55HH32Ud955h/fff7/mOU9mfA31EUpMTCQxMZGFCxfy0UcfMW3aNA9EeXb9\njjzp7zoTp7fhbXccTYWTJ0/yyCOPMHPmTLu7ZW/Cz8+Pzz77jJKSEh566CH2799Pjx49PB1WDV9/\n/TWRkZH06tWLLVu2OPUejwh+ff159u3bx7Fjxxg1ahSappGbm8u4ceP473//S7t27c5zlA33EdIZ\nPnw4Dz74oMcE/1z6HXkCZ79PbyImJoasrKyax7m5uU73hRLqprKykkceeYRRo0Zx0003eTqcBgkO\nDuYPf/gD3377rVcJ/s8//8yGDRvYtGkTZWVlnDx5kqSkJJKTk+t9j1cZz3FxcWzevJm0tDQ2bNhA\n+/btWblypUfEviEOHz5c83taWhrdunXzYDT1U1+/I2/Gm7LqSy65hCNHjnDs2DHKy8tZs2YNN954\no6fDqhdv+u7qY+bMmfTo0YN77rnH06HUi8lkqrFJTp8+zQ8//OB1/8cfe+wxvv76a9LS0njttdf4\n4x//eEaxBy/08G0xGAxe+wf86quvcvDgQfz8/IiNjeW5557zdEh18sILL1BRUcF9990H2Pc78ia+\n+uorZs+eTUFBAZMnT6Znz568++67ng4Lf39/Zs2axX333Yemadx66610797d02HVyfTp09myZQtm\ns5kbbriBadOmMW7cOE+HZce2bdtYvXo1cXFxjB49GoPBQGJiIgMGDPB0aHbk5eXxxBNPUF1dTXV1\nNfHx8TX7ffgy0ktHEAShmeBVlo4gCILgPkTwBUEQmgki+IIgCM0EEXxBEIRmggi+IAhCM0EEXxAE\noZkggi8IgtBMEMEXBEFoJvw//5K32R/vBHAAAAAASUVORK5CYII=\n",
- "text/plain": [
- "\u003cmatplotlib.figure.Figure at 0x7f5be3c99f50\u003e"
- ]
- },
- "metadata": {
- "tags": []
- },
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current loss: 9.48636\n"
- ]
- }
- ],
- "source": [
- "import matplotlib.pyplot as plt\n",
- "\n",
- "plt.scatter(inputs, outputs, c='b')\n",
- "plt.scatter(inputs, model(inputs), c='r')\n",
- "plt.show()\n",
- "\n",
- "print('Current loss: '),\n",
- "print(loss(model(inputs), outputs).numpy())"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "sSDP-yeq_4jE"
- },
- "source": [
- "### Define a training loop\n",
- "\n",
- "We now have our network and our training data. Let's train it, i.e., use the training data to update the model's variables (`W` and `b`) so that the loss goes down using [gradient descent](https://en.wikipedia.org/wiki/Gradient_descent). There are many variants of the gradient descent scheme that are captured in `tf.train.Optimizer` implementations. We'd highly recommend using those implementations, but in the spirit of building from first principles, in this particular example we will implement the basic math ourselves."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- }
- },
- "colab_type": "code",
- "id": "MBIACgdnA55X"
- },
- "outputs": [],
- "source": [
- "def train(model, inputs, outputs, learning_rate):\n",
- " with tf.GradientTape() as t:\n",
- " current_loss = loss(model(inputs), outputs)\n",
- " dW, db = t.gradient(current_loss, [model.W, model.b])\n",
- " model.W.assign_sub(learning_rate * dW)\n",
- " model.b.assign_sub(learning_rate * db)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "RwWPaJryD2aN"
- },
- "source": [
- "Finally, let's repeatedly run through the training data and see how `W` and `b` evolve."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "colab": {
- "autoexec": {
- "startup": false,
- "wait_interval": 0
- },
- "height": 446
- },
- "colab_type": "code",
- "executionInfo": {
- "elapsed": 569,
- "status": "ok",
- "timestamp": 1527005915434,
- "user": {
- "displayName": "",
- "photoUrl": "",
- "userId": ""
- },
- "user_tz": 420
- },
- "id": "XdfkR223D9dW",
- "outputId": "c43591ae-d5ac-4f2b-a8e7-bfce607e0919"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 0: W=5.00 b=0.00, loss=9.48636\n",
- "Epoch 1: W=4.58 b=0.42, loss=6.28101\n",
- "Epoch 2: W=4.24 b=0.76, loss=4.29357\n",
- "Epoch 3: W=3.98 b=1.02, loss=3.06128\n",
- "Epoch 4: W=3.78 b=1.23, loss=2.29721\n",
- "Epoch 5: W=3.61 b=1.39, loss=1.82345\n",
- "Epoch 6: W=3.49 b=1.52, loss=1.52970\n",
- "Epoch 7: W=3.38 b=1.62, loss=1.34756\n",
- "Epoch 8: W=3.30 b=1.70, loss=1.23463\n",
- "Epoch 9: W=3.24 b=1.76, loss=1.16460\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAEDCAYAAAD+/1UIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOXdPvD7zJZ9XwmELQkQIAELsiTsi6xiEBGXAiIW\nbV8WBY2K0tLa4lbsr283qxURtIoioAi8SpFNg6whi0FJKAoJBgLZt5k5c87vj5OZLIRkgEnOGXJ/\nritXJsmZyT0sN1+enPOMIMuyDCIicgs6tQMQEZHzWNpERG6EpU1E5EZY2kREboSlTUTkRljaRERu\nxODMQePGjYOvry90Oh0MBgM2b97c1rmIiKgZTpW2IAjYuHEjAgIC2joPERG1wKnlEVmWIUlSW2ch\nIqJWCM5cETl+/HgEBARAEATMmTMH9957b3tkIyKiJpxaHvnggw8QFhaG4uJiLFiwAD179sTgwYPb\nOhsRETXh1PJIWFgYACA4OBgTJ05EVlZWi8fL3t6AIADdugFvvglYrTeflIiIWl8eqampgSRJ8PHx\nQXV1NR5++GEsXrwYI0aMuPadCgtRvfoFeL2zDkJtLWxdu6NqRSrMs+8DDE4N9y4XFuaHoqIKVb73\ntTCTc7SYCdBmLmZyjlYzOaPVSfvy5ct44IEHkJKSgjlz5mDcuHEtFzYAREai6oWXUHwkA9WPPApd\n4QX4L/sVgpMGwWPTvwFRdCocERE15tQPIm9Ew3/FdBcK4P3ntfB89x0IVivEmFhUP/kMzCmzAL2+\nLb79VbT6LysztU6LmQBt5mIm52g1kzPa5YpIKaozKl9+DcWHT6Jm7gLof/wB/r98BEGjh8Fj28cA\nTyckInJKu17GLnWJRuXaP6P40AnUPDgP+jN58F+0AEFjhsO0fRvLm4ioFarsPSJ1647KP/0VxWnH\nUTvnAehPf4+AhfMQNG4ETDs/A/hiOkREzVJ1wyipR09U/OV1lHx9FLX3zIH+uxwEPPQAAieMgunz\nXSxvIqImNLHLny0mDhV/fxMlB4+g9u57YMjORMDcOQicNAamPV+wvImI6miitO1scb1Q8fo6lOz/\nBrUzZsJ4Mh0B99+DwKnjYdy7h+VNRNftL395DR999IHj4+XLl2DVqlWOj//61/+HDz/8txrRboim\nStvO1iceFf96B8V702CeNgPG48cQOGcmAu+cBOOBfSxvInJa//6JyM7OAKBsfldWVorc3FzH17Oz\nM5GQMECteNdNk6VtZ+vXH+Vvv4uSPQdhnjwVxiPfIPCeGQhImQpj2ldqxyMiN5CQMBBZWZkAgLNn\nz6Bnzxj4+PigsrISVqsVP/74A+Liequc0nnqXFN+ncSEASjf8AEMJ0/A+9UX4bH7c5hSpsIycjSq\nnloJcdhwtSMSkRN8Vj8Pj+3bXPqY5jtTULX699f8emhoKPR6Ay5duoisrEz075+I6uoyZGdnwsfH\nBzExsTCotL3GjdD0pN2UOPBnKH/vI5Ts2gPL2PEwHdyPoBmTEDD7LhiOHlY7HhFpVGJiIrKyMpCd\nrZT2gAEDkJWVgaws91oaAdxk0m5KHHQ7yjZtheHIYfi8sgam/Xth2r8X5vETUZ26EuJtg9SOSETN\nqFr9+xan4rbSr18isrIy8d//KssjHh4y/vnPf8HX1wfTpt3V7nluhltN2k2JQ4aibPMnKP1kFyzJ\nI+GxZzeCJo2F/8/vhSHzpNrxiEgjEhIGIC3tIPz9/SEIAgICAlBZWYHs7Cz075+gdrzr4talbWcd\nnoyyrTtQuuUzWIYlweOL/0PQhFHwn3c/9HU/gCCijismJhbl5WXo3z+x0ef8/Pzg7+9er33bLrv8\ntStZhvHAPvi8/AcYjx0BAJin3wWPXz+Hom69lRdn0Ait7jTGTM7RYi5mco5WMznjlpi0GxEEWEeP\nRemO3Sj9YAusPxsEj88+AYYMQeCEUfBc/xaEinK1UxIR3ZBbr7TtBAHWcRNQuutLlG7aCsycCUNO\nNvxSn0BIQm/4Ll8CQ/pxXqhDRG7l1i1tO0GAdex4YMsWFJ88hapnV0EKCYHXu+8gaNJYBI4fCc+3\n/wWhvEztpERErbr1S7sBKSIS1U88heKjmSj9YAvM02bAcOpb+D29HCGJveH7xGIYThzj9E1EmtWh\nSttBp4N13ASUv/2uMn2v/DWk0DB4vbcBQZPHIWjcCHiue5PTNxFpTscs7QakiEhUP/4kio9koHTT\nVpinzYD++1Pwe2aFMn0//j8wHD/K6ZuINKHDl7aDTgfr2PHK9J2eg8rnfgMpNBxe/96IoCnjETQ2\nmdM3kZsqLPwJ8+bNUTuGS7C0myFFRKJm2QoUHzmpTN/T74L+9HfK9J3QC77LfgXDsSOcvonciKCh\nazRuBku7Jfbpe91GXEk/hcrnV0MKj4DX++8iaOoEZfp+6w0IZaVqJyWiVoiiiD/8YTXmz78fy5Yt\ng9lsVjvSDbn1roi8BpddASVJMB7YB6+N62Ha9RkEUYTs5QXzXXejZu5DEAcPcfqqS61elcVMztFi\nLq1nWr3aA9u3u3afujvvFLF6dcsFXFj4E2bPnoF//GMd+vdPwJ/+9CI6dYrGfff93KVZbkbHvSKy\nrel0sI4Zh/K3NuDKye9Q+fxvIYVHwPOD9xA0bSKCxiTB861/cvom0piIiEjH5lAzZsxAZmaGyolu\njFtuzaoVcng4apY+gZrFy2A8uB+eG9fDY+d2+D37FHx/92uYZ8xEzbwF1zV9E93KVq82tzoVt5Wm\na9ru+leSk7Yr6HSwjh6Lin+9o0zfq34HKSISnpv+XTd9D4fnv16HUFqidlKiDquw8Cd8+202AGDH\njh1ITByocqIbw9J2MTk8HDVLHkfxN+ko3fwpau+6G/q8XPitTEVIYm/4LXkMhiOHeeYJUTvr3r0H\ndu36DPPn34+ysjKkpNyjdqQbwh9EtgOhqAiem/4Nz41vw3D2vwAAsU88DAsfxpVREyH16KlKruZo\n/QdZWqLFXMzkHK1mcgYn7XYgh4WhZvEylBw6gdKPt6M25W7oz+QBTz2FkKEDETR6OLxf/gMMWRmc\nwImoRfxBZHvS6WAdORrWkaNReeUKQr/eA/Omj2A6sA8+a1+Gz9qXYYvuCvOUabBMvRPWIcMAN3qV\naCJqe2wElcghIcDChSifcS+EygoYv/wPPHZ+BtPuz+H9xj/g/cY/IAUHwzxpKixTpsMyeizg5aV2\nbCJSGUtbA2RfP1hmzIRlxkzAYoHx64NKgf/fDni9/y683n8Xsrc3LGMnwDx1OiwTJ0EODFI7NhGp\ngKWtNSYTrGPHKy/c8PJaGE4cg8euHTDt3A6PHZ/CY8enkA0GWJNGKgU+ZRqkTlFqpyaidsLS1jKd\nDuLgIRAHD0HV86uhP/09PHZ9BtPO7TAd2AvTgb3AMytg/dkgmKdMh2XqnbDF9VI7NRG1IZ494i4E\nAbbefVD9+JMo/WI/rqTnoOLFV2EZOQaGjJPw/cNvEZw8GEFJg+Dz+9XKHuCSpHZqItVVVlZi69bN\nbfb406dPQGVlJQDgypXLGDnydmRlZTT4+kSUl7vuxcSdLm1JkjBz5kw89thjLvvmdOOkzl1Qu/BR\nlH38Ka7knEH5X/8J89Q7oS/Ih/f/voagKeMRPDAevqlPwLjvS8BiUTsykSoqKsqxdetHzX5NcsFg\n07dvArKzMwEA2dmZ6NWrD7KylI/PnfsRgYFB8Pf3v+nvY+d0aW/YsAExMTEu+8bkOnJQMMz33o/y\n9e/h8qmzKHvnfdTOeQCCuRZe699C4L0pCOkbA79fPgLT9m1A3VRA1BG8/vpfceFCAR5++EH8/e//\ni/T045g3bx5++9vnMX/+fVe9QML777+Lt99+EwBQUJCPFSuW4pFH5mHx4kU4d+7Hqx4/ISHRUdpZ\nWZmYM+dBfPttfYknJCS69Pk4taZdWFiI/fv347HHHsPbb7/t0gDkYt7esEyZBsuUaYAowvhNGky7\nPoPHzs/g+fGH8Pz4Q8geHrCMGQfLlOkw3zEFcmio2qmpAwke1L/Zzxcfz3bJ8U398pdL8MMP/8W6\nde8BANLTjyMrKwsbNnyIyMhIFBb+dM0XSHjllTVITV2Jzp27ICcnG2vXvoQ///kfjY7p3z8R69e/\nBQA4depbPPLIY/joo38DUEo8IWGAUzmd5VRpr1mzBqmpqaio0NZln9QKgwHWEaNgHTEKVb9/GYas\nDOUslF074PH5Lnh8vgu+Oh2sQ4fDMnU6zFOmA2HN/wUhupUkJiYiMjKyxWNqamqQnZ2BVauehn23\nD1EUrzqub99+yM39HrW1tbDZbPD09ERUVGcUFOQjOzsD99/v2j27Wy3tffv2ITQ0FPHx8Th8+LDT\nD+zsdfTtqcNnGj9SeVv7CpCbC3zyCYStW2E6lAbToa/hu+pZICEBYWPGAGPGAKNGARqZwrX4ewdo\nM5fmMzWzxAAAYde68/Ue34TFUg69XufIEBjoDS8vL8fHklQNQajPaDQCOp0JwcHeCAgIwPbtn7by\nHfzQvXs37N//OQYMSEBYmB+GDBmMrKxjKC8vw6Br/E/hRrVa2idOnMCXX36J/fv3w2w2o6qqCqmp\nqXjllVdavJ8WN2NhpgYCI4H5jwLzH4Vw8SI8Pt8Jj53bYUr7CsjKAv7yFwCAGN8X1uHJsCSPhHVY\nMuQwZ/+quI4Wf+8AbeZipqvV1sqoqKh0ZCgtrQZQ31GSZMLly1dw5kwBPD09sXv3HgwbloSaGhkR\nEZ3w4YdbMXbsBABAXl4uYmPjrvoeffr0w7p1b2PhwkdRVFSBbt164YUXViE+vp/Tz93Zf2xbLe3l\ny5dj+fLlAIAjR45g3bp1rRY2uRc5IgK18xagdt4ChPmbUPrFPhi/Pghj2tcwHjsMw6kceK1TfjAj\n9u4D6/BkWJNHwjJ8BOTwcJXTE7XM3z8ACQkDMH/+fRg6NAnDhyc3+rrBYMCCBY9g0aL5iIrqjG7d\nuju+9utfv4A//vElvPPOOthsIsaPv6PZ0k5IGIDNmzehXz/llXF69+6DoqIizJgx0+XP57q2ZrWX\n9uuvv97qsfzXvnVukcligSH9BEyHvlKK/OhhCNXVji+Lcb1gHT4C1uQRsCaNgBTR8jqhSzJphBZz\nMZNztJrJGdxPW0VumclqheHkCRgPfQ3T1wdhOHIYuqr6UwjFmFhYk0Y43lxxib0Wf50AbeZiJudo\nNZMzeBk7XR+jEeLtQyHePhQ1S5crJZ55UllKSTsI4+Fv4LVxPbw2rgcA2Lr3UNbD65ZUpM5d1M1P\n5OZY2nRzjEaIg26HOOh21Cx5HBBFGLIylBI/9BWMh9Lg9d4GeL23AQBg69odluQR9SUe3VXlJ0Dk\nXlja5FoGA8TbBkG8bRBq/mcpYLPB8G0WjF9/VV/iddvNAoAtuiusSSNgsS+ndO3mvi+TTdQOWNrU\ntvR6iIkDISYORM0vFwM2G/Q538KUdtAxjXtu+jc8NylXkNk6d3Gsh1uSRkDq3kPlJ0CkLSxtal96\nPWwJiahJSETNo/8DSBL0p3Ial/hHH8Dzow8AALZOUcCY0fDqkwAxcQDEhETI/gEqPwki9bC0SV06\nHWz9+qOmX3/U/OKXSol//x2MaV/BlKYsqeD99+GL9x13EXv0VKb3hAF1RT5Aefk2og6ApU3aotPB\nFt8Xtvi+qF24CJBlhJUWonx/GgyZGcpb1kl4frIF+GSL4262LtH1JZ44AGLiwDY5Z5zcT2VlJXbv\n/j/MnHlPm32PNWt+i+TkkRg9elybfQ87ljZpmyAAvXrBHNQJ5pRZyudkGbr8844CN2RmwJhxEh67\nPoPHrs8cd7WFR9SXeMJAiIkDIHWJ5g86Oxj7ftpNS1uSJOh07vc6MCxtcj+CACm6KyzRXWGZdqfj\n07qLhTBknmwwkWfA4z9fwOM/XziOkYKCHAVuf7N17wm44V9edzVokE+znz9+vMolxzfVcD9tvV4P\nLy9vREVF4ttvc/Dqq39Gaurj2LBhEwBlL+3a2hosWPALFBTk47XXXkFZWSk8PT2Rmvocunbtds3v\nc/ToYXz44fsoKSnG4sVPIClphFP5rhdLm24ZUkQkLBMnwzJxsuNzwpUrMGTVl7gh82T962va7+fr\nBzEh0bE+LiYOhC02DjDwr8etoOF+2unpx5Ga+gTWrn0VRqPfTe+l3VBh4U/429/eRH7+eSxd+hg2\nbdoGo9Ho8ufDP5V0S5NDQmAdMw7WMfVrjUJ5GQzZWfVTeVYGjIcPwXTo6/r7eXlB7NvfsT4uJg6A\n2DseMJnUeBq3FGcn5Bs9vjV9+/ZDVFRUi5exO7uXdkPjxk0EAHTpEo2oqM748ccfmt1c6maxtKnD\nkf0DHOeCO1RVwZCT3WAiz4AhIx3G40fr72c0QozvpxR4/0Rg2CAIIZ2VnQ65Tu42PD09Hbf1ej1s\ntvrXibRYzAAAWZbg5+fveLUbZzSd2K81wd8sljYRAPj4OPZUcTCbYfgup9FZK4Zvs2HMPOk4JBSA\n5B8AW2wsbDFxsMX1glj33tajJ+Dh0f7PhRrx9vZGdd3OlE33xwsKCkZpaQnKy8vh6emJtLSvMGxY\nEry9fdCpUxT27v1Pq3tp2+3d+x9MnjwNFy4U4MKFghbXv28GS5voWjw8IA64DeKA2+o/Z7VCn3sa\nhqwM+F/4EeaMbOjP5MKQlQnjieON7i7rdJC6doMYG+codFtsHMTYXsqLSXA6bxcN99M2mTwQHBzs\n+Jor9tK2i47uhsWLF6GkpBhPPbWyTdazAW7Nqipmco4WMwFNcokidOd+hOFMLvS5udCfyVXKPS8X\nustFV93XMZ3H1he5LTbupqdzLf5aMZNzuDUrUXsyGCD1jIGlZwzQ4OwVABBKS6DPy4U+LxeGuvf6\nvNOtT+f2Iq9bcuF0TgBLm6jNyYFBEAcPgTh4CMwNvyCK0J/7oa7E86DPO11X7KeVc8sbnF8O1E3n\nccpSixjXS1lyccF0Ts7bsGEd9u79DwRBgCzLEAQBY8dOwNy5C9otA5dHVMRMztFiJqBtc101neee\nVpZczv4XgtXa6FjHdB7XCx59eqEyJBK26GhIXaJh69IVcmioqhO6Fn//tJrJGZy0iTTIqem8bu3c\nUFfoHrs/B3Z/Dt+mj+XlBVvnLkqJR3eFFN0VtrpCl6KjIUV2AvT6dnx2dDNY2kTuxGCArWcsbD1j\ngTumNPqSUFKM0MorKMv8Dvr8c9Dln4f+/Pm69z/CkJfb7EPKBgOkqM6wdbFP59GOYpeio2HrHM3l\nFw1haRPdIuSgYKBXN1iir3FaWmUl9PnnlUI/fx76/PPQ5Z9zFLvx0NcQrrFaaguPUAo8uiukLg0K\nvW5al32d+6893TyWNlFH4esLW5942PrEN/91sxm6CwV1ZX4e+vPn6m+fOwdDxkkYjx9r9q5SYKBS\n4F2i69bT64sdiX0A2YNLMC7C0iYihYcHpB49IfXo2fzXbTboLhbWTen1yy/224b/5kHIzmz2rqF6\nPaTQMEjhEZAiIhq/D49s9DG8vdvwSbo/ljYROUevhxTVGVJUZ4hDh139dVmGUFzcYPlFKXPv4iKI\n5wuUrXPP5ELIymjx20h+/pDCwyFFRCrvHcVu/1wEpIhIyMHBHXJLXZY2EbmGIEAOCYEYEgI0uPTf\nO8wPpQ1OrxMqK6C7dBG6ixfr3hdCd+lS3fv6z+v/e+aaa+xA3Q9Qw8KbTO0RjlJvWPJosEmUu2Np\nE1G7kn39YPP1U86AaYnVCt2Vy1eVeePCvwjD96cgZKS3+FBSQGD91B4RAXTtAm9PX0jBIZCCgyEH\nBUMKCoYcEgIpKFjTJc/SJiJtMhohRXZSziNviSxDqChvMq03md7r3gy5px13a/71cOoe0ttbKfSg\nukIPaVDswcH1X6u7LQcHQ/bxbZeLmFjaROTeBAGyfwBs/gHKKw61xGKB7nIRQsQqlJ45D11JMYSS\nYuiuXGl0Wygpga6kGIYzeRCqnXsRBtlobDSty0H1hS4FBSsTfXDj4pcDAq97XZ6lTUQdh8kEKaoz\nEOYHa9dezt3HbFYKvbgYuuIrSrHbbxcX15e9/eOfLsBwKseph5Z1OsiBgZCCQ4AG/wtoCUubiKgl\nHh7KEk1kJ9icvY8oQigtVQq9boq/ZvHX3XYWS5uIyNUMBsihobCFhgJOvkxkmJMP3fFOciQicmMs\nbSIiN8LSJiJyIyxtIiI30uoPIi0WCx588EFYrVbYbDZMmjQJixcvbo9sRETURKulbTKZsGHDBnh5\necFms+H+++/HqFGjkJiY2B75iIioAaeWR7y8vAAoU7coim0aiIiIrs2p0pYkCSkpKUhOTkZycjKn\nbCIilTh1cY1Op8O2bdtQWVmJX/3qV8jLy0NsbAs7dHXvjmDp6i0Vi49nN3t48KD+zX7epcfrhKsy\nqZoHuCqT6nmaZNJEngaZNJPH7tyPmsrD42+N41tzXVdE+vr6YsiQITh48GDLpQ1Ar7t6t6trvkR8\nM8e2xfFNM6mdp2kmLeRpmEkreeyZtJSnxfuolMd+/FX3UznPVffVQJ5GH2skj7MEWW5hl3EAxcXF\nMBqN8PPzQ21tLRYuXIhFixZh9OjRLT5wUYNNz7UgLMyPmZzATM7TYi5mco5WMzmj1Um7qKgIzzzz\nDCRJgiRJmDp1aquFTUREbaPV0u7duze2bt3aHlmIiKgVvCKSiMiNsLSJiNwIS5uIyI2wtImI3AhL\nm4jIjbC0iYjcCEubiMiNsLSJiNwIS5uIyI2wtImI3AhLm4jIjbC0iYjcCEubiMiNsLSJiNwIS5uI\nyI2wtImI3AhLm4jIjbC0iYjcCEubiMiNsLSJiNwIS5uIyI2wtImI3AhLm4jIjbC0iYjcCEubiMiN\nsLSJiNwIS5uIyI2wtImI3AhLm4jIjbC0iYjcCEubiMiNsLSJiNwIS5uIyI2wtImI3AhLm4jIjbC0\niYjciKG1AwoLC5GamorLly9Dr9dj9uzZmDdvXntkIyKiJlotbb1ej2effRbx8fGoqqrC3XffjeTk\nZMTExLRHPiIiaqDV5ZGwsDDEx8cDAHx8fBATE4NLly61eTAiIrrada1p5+fn47vvvkNiYmJb5SEi\noha0ujxiV1VVhaVLl2LlypXw8fFp8dju3QFJuvqY48ermj1+0KDmH8+Vx+t0V2dSMw+AqzKpnadp\nJi3kaZhJK3nszp1r9tOq5eHxt8bxrXGqtEVRxNKlS3HXXXdhwoQJTj2wTnf1EB8W5neNY5t/DFcf\n3zST2nmaZtJCnoaZtJLHnklLeVq6j1p57Mc3vZ/aeZre1kKehh9rJY+zBFmW5dYOSk1NRVBQEJ59\n9lmnH7ioqOKGArWVsDA/ZnICMzlPi7mYyTlazeSMVte0jx8/ju3bt+Obb75BSkoKZs6ciQMHDtx0\nQCIiun6tLo8MGjQIp06dao8sRETUCl4RSUTkRljaRERuhKVNRORGWNpERG6EpU1E5EacviKSiIiu\nnyQBZWVASYmA4uL6t5ISwfG5khIBn37q3OOxtImInGSxoFHRNizgpkWsfAyUlgqQJMFlGVjaRNTh\nyDJQWYmrCvdaU7D981VVzpWvXi8jKEhGaKiMuDgJQUEygoOVt6Ag1L2XHe+DgmQAvk49NkubiG4Z\nNTVAUZGAixcFXLqkw6VLyu2iIuVj5fMCLl8GLBbnLhv39lZKtUcPqVHR1pdw4/INCZHh5wcIrhuu\nG2FpE5GmSZIyEV+6JDhK2F7IDd8uXtShvLzlpvTwkBERIWPgQMDfX2yxfO23vbza6Yk6iaVNRKqo\nqUGjwm1cwvVTcVGRAFFsuYxDQiR07izhtttkhIfLiIiQEB5uvy3X3Zbg769MwMqGUTXt9Exdi6VN\nRC4likBhoYD8fB3OnxdQUQGcPevRYEpWStn5qVhCeLjUqIAblnJYmAyjsZ2enAawtInoutTUABcu\nCDh/Xof8fB3y8+23laK+cEGAzda0kE2OW9eaiusnYuVzbbku7M5Y2kTUSFkZGpVw49sCLl9u/po8\nQZARGSnjZz+T0KWL/U1GfLwnPD2rEBGhnE3RkabitsDSJupAZFlZR25Ywsq0XH+7oqL58dZolNG5\ns4z4eBFdusjo0kVCdLTkuB0VJcNkuvp+YWGeKCqS2viZdRwsbaJbiNUKnDvXtJDrlzIKCgSYzc2X\nso+P3KiEu3SxfywhOlpZtmjppdeofbC0idyMLAM//SQgL0+H3FwdzpzRIS9PeV9QAEhS8xdphIZK\niI9X1pPrC7m+mAMDuYbsDljaRBpVXQ2cOaOUccNyzsvTobr66naNiJCQlARERFgbTczR0TI6d5bg\n7a3CkyCXY2kTqcg+Nefm1heyfWrOz796LcLTU0bPnhJiYxu/xcQoZ1so5x/XqvBMqL2wtInagX1q\nbljK9um5uak5MlLCyJEiYmIal3OXLlxX7uhY2kQuIsvK+csNJ2b7W0HBtafmuDjJUc72277O7R1E\nHRBLm+g6WSzA99/rcOkScOKEqdH03NzU3KmTMjU3XMqIi5PQuTOnZrp+LG2iFtTUADk5OmRm6pGV\npbw/dUoHq9Vezh4AAC+va681c2omV2JpE9WprASys/XIzKwv6dOndY0uyfbwkJGQIKF/fxsGDzYh\nIqIasbGcmqn9sLSpQyopAbKylIJW3utx5kzj1vX2ljF4sA2JiRISEpT3cXGS4zLssDATiopsKqSn\njoylTbe8S5cEx9KGvaTPnWtc0AEBMkaOFJGQICEx0YbERBt69uT0TNrD0qZbhv3sjYblnJmpQ2Fh\n4+YNDZUwbpyIxESbo6S7dpV5NSC5BZY2uSVZBn74QXAUs30N+sqVxgUdFSVh8mRrgwlaQmQkC5rc\nF0ubNM9mA06f1jUq56ws/VWb6HfrJiEpyepYg05IkBAWJquUmqhtsLRJc8xmID1dj6+/1iMtTY/j\nx4Hqah/H1wVBeYXrCRPqp+f+/W0IDFQxNFE7YWmT6mprgRMnlIJOS9Pj2DE9amvrp+h+/YCEBKtj\nDbpfPxvPfaYOi6VN7a6mBjh+vL6kjx/XO/Z4FgQZfftKSE62YfhwG4YPF9G7NzdBIrJjaVObq64G\njh2rL+lQSYIFAAANpklEQVQTJ/SwWOpLun9/CUlJNiQl2TBsmIigIJUDE2kYS5tcrqrq6pK2X/at\n09WXdHKyiKFDuRZNdD1Y2nTTKiuBo0ftJW1AeroOolhf0omJ9klaKemAAJUDE7kxljZdt8pK4MgR\n+9kdBmRk1Je0Xi9jwAAJw4crk/SQITb4+6scmOgW0mppr1y5Evv27UNISAi2b9/eHplIYyoqgMOH\n6yfpjIz6TZT0ehkDB0pIShKRnGzDkCE8s4OoLbVa2nfffTfmzp2L1NTU9shDGlBeDnzzjVLQaWnK\nFYeSpJS0wSDjttskJCeLGD6cJU3U3lot7cGDB6OgoKA9spBKZBk4eVKHXbsMOHgQSE/3dZS00ajs\ndGc/u+P2223w8WnlAYmozXBNu4OyWoFDh/TYtcuAXbsMuHBB2bPDaARuv92G5GSlpAcPtvFVvIk0\npM1KOyzMr60e+oZ19EzV1cAXXwBbtwLbtyt7SgNAYCAwdy6QkgJMmgT4+BigtX/Ptfh7B2gzFzM5\nR4uZnNFmfzOLiira6qFvSFiYX4fMVFICfPGFATt3GrBvnwE1NcqyR2SkhAULREydKiIpyebY2N/H\np2P+Ot0ILeZiJudoNZMznCptWeZOae7kwgUBu3YpRZ2Wpnec6REba8PUqUpRDxwocYN/IjfUammv\nWLEChw8fRmlpKcaMGYMlS5Zg1qxZ7ZGNrkNurg47dypFnZ6ud3z+ttuUop4yRUSvXpKKCYnIFVot\n7bVr17ZHDrpOkqSc8WEv6rw8paj1euVls+xFHRXF/yUR3Uq09dMmapHVCqSl1Z/x8dNPyvqGl5eM\nKVOsmDpVxB13cMMlolsZS1vjqquBvXuVaXr3bgNKS5X16cBAGffeqxT1mDEiT8sj6iBY2hpUUgJ8\n/rlS1Pv315/xERUlYdYspaiHDas/44OIOg6WtkYUFAiOZY+GZ3z06lX/g8SBAyW+IC1RB8fSVtGp\nU8C775qwc6cBJ0/Wn/Hxs5/ZT82zIjaWP0gkonos7XZWWgp89JER775rxKlTAOABg0HGqFH1Z3x0\n6sSiJqLmsbTbgSwDR4/qsGGDCZ9+akBtrQCjUcbMmcCECTWYOFHkq7cQkVNY2m2orEyZqjduNOLU\nKWX5o0cPCXPnmjFnjoi+fX1RVCSqnJKI3AlL28VkGTh2TIeNG0345BPlzA+jUcZdd1kxd64VI0bY\nePk4Ed0wlraLlJUBmzcbsWFD/VTdrZuEuXMtuP9+K8LCuE5NRDePpX0TZBk4cUJZq962TZmqDQYZ\nM2YoU/XIkZyqici1WNo3oLy8fqrOyWk8Vd93nxXh4ZyqiahtsLSdJMtAeroOGzYYsW2bEdXVylQ9\nfboV8+ZZMWoUp2oianss7VZUVChT9caNRmRnK1N11671U3VEBKdqImo/LO1m2F/oduNGI7ZsUaZq\nvV7GtGnKVD16NKdqIlIHS7uBysr6qTorq36q/vnPlTNAOFUTkdpY2gAyMpS16o8/rp+qp05Vpuox\nYzhVE5F2dNjSrqwEtmxRzgDJzFSm6i5dJCxdasEDD1gRGcmpmoi0p8OVdmamDu+8o6xVV1UpU/Xk\nyVbMn69M1Xp9649BRKSWDlHalZXAtm3A3//u7dgCtXNnCYsXK1M1d9UjIndxS5d2eTnwxhsmvP66\nCeXlgE6nw+TJylr12LGcqonI/dySpV1ZCbz1lgl/+5sJpaUCQkIkrF4tICWliq9OTkRu7ZYq7epq\nYN06I/72NxOuXNEhMFDGc8+ZsXChBT16+KGoiIVNRO7tlijt2lpgwwYj/vxnE4qKdPD3l5Gaasai\nRRb4+6udjojIddy6tM1m4N13lbIuLNTBx0fG8uVmPPaYha8EQ0S3JLcsbasVeP99I/70JxMKCnTw\n9paxZIkZv/qVFSEhXAIholuXW5W2KAIffWTA2rUeOHdOB09PGY89ZsGSJRa+yAARdQhuUdo2G7Bl\niwF//KMHzp7VwWSS8cgjFixbZuF+IETUoWi6tCUJ+PRTA1591YTcXD2MRhkPPWTB449beOoeEXVI\nmixtSQJ27lTK+tQpPfR6GT//uVLWXbuyrImo49JUacsy8MUXerz8sgeys/XQ6WTMmWPF8uVm9OjB\nsiYi0kRpyzKwd69S1unpegiCjLvvtuLJJ82IjWVZExHZqVrasgwcPKiU9dGjykYgM2ZY8eSTFvTp\nI6kZjYhIk1Qr7UOH9HjpJRMOHVIiTJlixVNPWdC/P8uaiOha2r20jx7V4aWXPHDwoPKtJ04UkZpq\nxoABLGsiotY49UJaBw4cwOTJkzFp0iS88cYbN/SNTpzQ4b77vDBtmg8OHjRgzBgRu3ZV4b33aljY\nREROanXSliQJL7zwAtavX4/w8HDcc889GD9+PGJiYpz6BllZOrzyigc+/1z5ViNGiEhNtWDYMNvN\nJSci6oBaLe3MzEx069YNnTt3BgBMmzYNe/bsabW0c3J0ePVVE3bsMAIAhg4V8fTTFowYwbImIrpR\nrZb2xYsX0alTJ8fHERERyMrKavE+990HfPihN2RZwKBBNjz9tBmjR9sgCDcfmIioI2u1tGX5+s+T\n3rQJGDBAwtNPmzF+PMuaiMhVWi3tyMhIXLhwwfHxxYsXER4e3uJ9lJ7XA/C+yXiuFRbmp3aEqzCT\nc7SYCdBmLmZyjhYzOaPVs0cSEhJw7tw5FBQUwGKxYMeOHRg/fnx7ZCMioiZanbT1ej1WrVqFhx9+\nGLIs45577nH6zBEiInItQb6RRWsiIlKFUxfXEBGRNrC0iYjcCEubiMiNuHTDqAMHDmDNmjWQZRmz\nZs3CokWLXPnwN2TlypXYt28fQkJCsH37drXjAAAKCwuRmpqKy5cvQ6/XY/bs2Zg3b56qmSwWCx58\n8EFYrVbYbDZMmjQJixcvVjWTnSRJmDVrFiIiIvD666+rHQfjxo2Dr68vdDodDAYDNm/erHYkVFRU\n4LnnnkNubi50Oh3WrFmDAQMGqJrp7NmzeOKJJyAIAmRZxvnz57Fs2TLV/6yvX78emzdvhiAI6NWr\nF1588UWYTCZVM73zzjuOP0et9oHsIjabTZ4wYYKcn58vWywWecaMGXJeXp6rHv6GHT16VM7JyZGn\nT5+udhSHS5cuyTk5ObIsy3JlZaV8xx13aOLXqrq6WpZlWRZFUZ49e7ackZGhciLF22+/La9YsUJ+\n9NFH1Y4iy7Isjxs3Ti4tLVU7RiNPP/20vHnzZlmWZdlqtcoVFRUqJ2rMZrPJycnJ8oULF1TNUVhY\nKI8bN042m82yLMvysmXL5K1bt6qa6fTp0/L06dNls9ksi6IoP/TQQ/KPP/54zeNdtjzScI8So9Ho\n2KNEbYMHD4a/v7/aMRoJCwtDfHw8AMDHxwcxMTG4dOmSyqkALy8vAMrULYqiymkUhYWF2L9/P2bP\nnq12FAdZliFJ2tmZsrKyEseOHcOsWbMAAAaDAb6+viqnaiwtLQ1du3ZttCWGWiRJQk1NDURRRG1t\nbasXC7a1M2fOYODAgTCZTNDr9bj99tuxe/fuax7vstJubo8SLRSR1uXn5+O7775DYmKi2lEgSRJS\nUlKQnJyM5ORkTWRas2YNUlNTIWhoLwRBELBw4ULMmjULH374odpxkJ+fj6CgIDz77LOYOXMmVq1a\nhdraWrVjNbJz505MmzZN7RiIiIjAggULMGbMGIwaNQp+fn5ISkpSNVNcXByOHj2KsrIy1NTU4MCB\nA/jpp5+uebzLSlvm6d7XraqqCkuXLsXKlSvh4+OjdhzodDps27YNBw4cQEZGBvLy8lTNs2/fPoSG\nhiI+Pl5Tf74++OADbNmyBW+++Sbee+89HDt2TNU8oigiJycHDzzwALZu3QpPT88b3ve+LVitVnz5\n5ZeYMmWK2lFQXl6OPXv2YO/evTh48CCqq6tV/1lXTEwMfvGLX2DBggVYtGgR+vTpA4Ph2j9udFlp\n38geJR2ZKIpYunQp7rrrLkyYMEHtOI34+vpiyJAhOHjwoKo5Tpw4gS+//BLjx4/HihUrcPjwYaSm\npqqaCVCWtwAgODgYEydObHXXy7YWGRmJyMhIJCQkAAAmTZqEnJwcVTM1dODAAfTr1w/BwcFqR0Fa\nWhqio6MRGBgIvV6PiRMnIj09Xe1YmDVrFrZs2YKNGzciICAA3bp1u+axLittLe9RoqUpzW7lypWI\njY3F/Pnz1Y4CACguLkZFRQUAoLa2FocOHULPnj1VzbR8+XLs27cPe/bswWuvvYahQ4filVdeUTVT\nTU0NqqqqAADV1dX46quvEBcXp2qm0NBQdOrUCWfPngUAfPPNN5raamLHjh2YPn262jEAAFFRUcjI\nyIDZbIYsy5r5tSouLgYAXLhwAbt3727x18tlp/xpdY8S+4RWWlqKMWPGYMmSJY4f2Kjl+PHj2L59\nO3r16oWUlBQIgoAnnngCo0aNUi1TUVERnnnmGUiSBEmSMHXqVIwePVq1PFp1+fJlLF68GIIgwGaz\n4c4778SIESPUjoXnn38eTz75JERRRHR0NF588UW1IwFQBoC0tDT87ne/UzsKACAxMRGTJk1CSkoK\nDAYD+vbti3vvvVftWFiyZAnKyspgMBjwm9/8Bn5+196BkHuPEBG5EV4RSUTkRljaRERuhKVNRORG\nWNpERG6EpU1E5EZY2kREboSlTUTkRljaRERu5P8D+7Wym3BFpegAAAAASUVORK5CYII=\n",
- "text/plain": [
- "\u003cmatplotlib.figure.Figure at 0x7f5be4b8ec50\u003e"
- ]
- },
- "metadata": {
- "tags": []
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "model = Model()\n",
- "\n",
- "# Collect the history of W-values and b-values to plot later\n",
- "Ws, bs = [], []\n",
- "epochs = range(10)\n",
- "for epoch in epochs:\n",
- " Ws.append(model.W.numpy())\n",
- " bs.append(model.b.numpy())\n",
- " current_loss = loss(model(inputs), outputs)\n",
- "\n",
- " train(model, inputs, outputs, learning_rate=0.1)\n",
- " print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' %\n",
- " (epoch, Ws[-1], bs[-1], current_loss))\n",
- "\n",
- "# Let's plot it all\n",
- "plt.plot(epochs, Ws, 'r',\n",
- " epochs, bs, 'b')\n",
- "plt.plot([TRUE_W] * len(epochs), 'r--',\n",
- " [TRUE_b] * len(epochs), 'b--')\n",
- "plt.legend(['W', 'b', 'true W', 'true_b'])\n",
- "plt.show()\n",
- " "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "vPnIVuaSJwWz"
- },
- "source": [
- "## Next Steps\n",
- "\n",
- "In this tutorial we covered `Variable`s and built and trained a simple linear model using the TensorFlow primitives discussed so far.\n",
- "\n",
- "In theory, this is pretty much all you need to use TensorFlow for your machine learning research.\n",
- "In practice, particularly for neural networks, the higher level APIs like `tf.keras` will be much more convenient since it provides higher level building blocks (called \"layers\"), utilities to save and restore state, a suite of loss functions, a suite of optimization strategies etc. \n",
- "\n",
- "The [next tutorial](TODO) will cover these higher level APIs."
- ]
- }
- ],
- "metadata": {
- "colab": {
- "collapsed_sections": [],
- "default_view": {},
- "name": "Training Models",
- "provenance": [],
- "version": "0.3.2",
- "views": {}
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}