aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party
diff options
context:
space:
mode:
authorGravatar Vijay Vasudevan <vrv@google.com>2015-12-02 15:05:37 -0800
committerGravatar Vijay Vasudevan <vrv@google.com>2015-12-02 15:05:37 -0800
commitbb7a7a8858dc18ba733ed64e0733e27a4224ece8 (patch)
tree26dc98ddbbb220fd008de2925f482edf00a8c6bf /third_party
parentbf6b536bde7d8060c489b51fedb58968b8cbfd7c (diff)
TensorFlow: upstream changes from eigen to fix build from
changes in last commit.
Diffstat (limited to 'third_party')
-rw-r--r--third_party/eigen3/Eigen/src/Core/functors/UnaryFunctors.h33
-rw-r--r--third_party/eigen3/unsupported/Eigen/CXX11/Tensor3
-rw-r--r--third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h6
-rw-r--r--third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h16
-rw-r--r--third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h16
-rw-r--r--third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h32
-rw-r--r--third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h7
-rw-r--r--third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h232
8 files changed, 312 insertions, 33 deletions
diff --git a/third_party/eigen3/Eigen/src/Core/functors/UnaryFunctors.h b/third_party/eigen3/Eigen/src/Core/functors/UnaryFunctors.h
index 2a22e5bc19..6feb229339 100644
--- a/third_party/eigen3/Eigen/src/Core/functors/UnaryFunctors.h
+++ b/third_party/eigen3/Eigen/src/Core/functors/UnaryFunctors.h
@@ -486,6 +486,39 @@ struct functor_traits<scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
+/** \internal
+ * \brief Template functor to compute the signum of a scalar
+ * \sa class CwiseUnaryOp, Cwise::sign()
+ */
+template<typename Scalar,bool iscpx=(NumTraits<Scalar>::IsComplex!=0) > struct scalar_sign_op;
+template<typename Scalar>
+struct scalar_sign_op<Scalar,false> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
+ {
+ return Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
+ }
+};
+template<typename Scalar>
+struct scalar_sign_op<Scalar,true> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
+ {
+ typename NumTraits<Scalar>::Real aa = std::abs(a);
+ return (aa==0) ? Scalar(0) : (a/aa);
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_sign_op<Scalar> >
+{ enum {
+ Cost =
+ NumTraits<Scalar>::IsComplex
+ ? ( 8*NumTraits<Scalar>::MulCost ) // roughly
+ : ( 3*NumTraits<Scalar>::AddCost),
+ PacketAccess = false,
+ };
+};
+
} // end namespace internal
} // end namespace Eigen
diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/Tensor b/third_party/eigen3/unsupported/Eigen/CXX11/Tensor
index 3904c72eef..2113b3a00a 100644
--- a/third_party/eigen3/unsupported/Eigen/CXX11/Tensor
+++ b/third_party/eigen3/unsupported/Eigen/CXX11/Tensor
@@ -59,7 +59,7 @@
#include <curand_kernel.h>
#endif // defined(__CUDACC__)
#else
-#include "perftools/gputools/executor/gcuda.h"
+#include "platforms/gpus/gcudacc/runtime/gcudacc_runtime.h"
#ifdef __CUDACC__
#include "third_party/gpus/cuda/curand_device/curand_kernel.h"
#endif // defined(__CUDACC__)
@@ -88,6 +88,7 @@
#include "unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h"
+#include "unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h"
diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
index 35ebca151b..720c3b6a82 100644
--- a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
+++ b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
@@ -81,6 +81,12 @@ class TensorBase<Derived, ReadOnlyAccessors>
}
EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived>
+ sign() const {
+ return unaryExpr(internal::scalar_sign_op<Scalar>());
+ }
+
+ EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
sqrt() const {
return unaryExpr(internal::scalar_sqrt_op<Scalar>());
diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h
index a62682c728..48859fe5fa 100644
--- a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h
+++ b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h
@@ -757,11 +757,17 @@ static inline void setCudaSharedMemConfig(cudaSharedMemConfig cache_config) {
}
struct GpuDevice {
- GpuDevice()
- : stream_(perftools::gputools::MachineManager::singleton()->stream_for_device(0)),
- allocator_(nullptr),
- stream_exec_(stream_->parent()),
- device_descr_(&(stream_exec_->GetDeviceDescription())) {}
+ // Default constructor: Get [cached] device 0 and its default stream.
+ GpuDevice() : allocator_(nullptr) {
+ perftools::gputools::Platform* platform =
+ perftools::gputools::MultiPlatformManager::PlatformWithName("cuda")
+ .ValueOrDie();
+ stream_exec_ = platform->ExecutorForDevice(0).ValueOrDie();
+ // TODO(rspringer): If we ever pull from an executor aside from 0, this will
+ // need to be preceded by a call to SetDevice(N);
+ stream_ = platforms::gpus::gcudacc::GetDefaultStream();
+ device_descr_ = &(stream_exec_->GetDeviceDescription());
+ }
GpuDevice(perftools::gputools::Stream* stream,
const Allocator* alloc = nullptr)
diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
index 863c28ab43..b7cea143ff 100644
--- a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
+++ b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
@@ -418,11 +418,13 @@ inline void TensorExecutor<Expression, GpuDevice, false, Tileable>::run(
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
if (needs_assign) {
- const int num_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() /
- device.maxCudaThreadsPerBlock();
const int block_size = device.maxCudaThreadsPerBlock();
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / block_size;
const Index size = array_prod(evaluator.dimensions());
+ // Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
+ const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, (size + block_size - 1) / block_size), 1);
+
LAUNCH_CUDA_KERNEL(
(EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>,
Index>),
@@ -438,11 +440,13 @@ inline void TensorExecutor<Expression, GpuDevice, true, Tileable>::run(
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
if (needs_assign) {
- const int num_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() /
- device.maxCudaThreadsPerBlock();
const int block_size = device.maxCudaThreadsPerBlock();
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / block_size;
const Index size = array_prod(evaluator.dimensions());
+ // Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
+ const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, (size + block_size - 1) / block_size), 1);
+
LAUNCH_CUDA_KERNEL(
(EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>,
Index>),
diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
index 6d63b23b2f..8330f65dde 100644
--- a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
+++ b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
@@ -59,13 +59,8 @@ namespace {
template <typename T>
struct DividerTraits {
-#if defined(__SIZEOF_INT128__) && !defined(__CUDACC__)
typedef typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type type;
static const int N = sizeof(T) * 8;
-#else
- typedef uint32_t type;
- static const int N = 32;
-#endif
};
@@ -78,40 +73,39 @@ namespace {
#endif
}
+ template <typename T>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) {
#if defined(__CUDA_ARCH__)
- template <typename T>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) {
return __umul64hi(a, b);
- }
-#else
- template <typename T>
- EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) {
-#if defined(__SIZEOF_INT128__) && !defined(__CUDACC__)
+#elif defined(__SIZEOF_INT128__)
__uint128_t v = static_cast<__uint128_t>(a) * static_cast<__uint128_t>(b);
return static_cast<uint64_t>(v >> 64);
#else
- EIGEN_STATIC_ASSERT(sizeof(T) == 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return (a * b) >> 32;
+ return (TensorUInt128<static_val<0>, uint64_t>(a) * TensorUInt128<static_val<0>, uint64_t>(b)).upper();
#endif
}
-#endif
template <int N, typename T>
struct DividerHelper {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier (const int log_div, const T divider) {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier(const int log_div, const T divider) {
EIGEN_STATIC_ASSERT(N == 32, YOU_MADE_A_PROGRAMMING_MISTAKE);
return (static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1;
}
};
-#if defined(__SIZEOF_INT128__) && !defined(__CUDACC__)
template <typename T>
struct DividerHelper<64, T> {
- static EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) {
+ static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) {
+#if defined(__SIZEOF_INT128__) && !defined(__CUDA_ARCH__)
return ((static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1);
+#else
+ const uint64_t shift = 1ULL << log_div;
+ TensorUInt128<uint64_t, uint64_t> result = (TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider) - TensorUInt128<static_val<1>, static_val<0> >(1, 0) + TensorUInt128<static_val<0>, static_val<1> >(1));
+ return static_cast<uint64_t>(result);
+#endif
}
};
-#endif
+
}
diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h
index 2e59a147bc..efa2f358db 100644
--- a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h
+++ b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h
@@ -141,6 +141,7 @@ struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
m_unshuffledInputStrides[i] =
m_unshuffledInputStrides[i - 1] * input_dims[i - 1];
m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
+ m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
}
} else {
m_unshuffledInputStrides[NumDims - 1] = 1;
@@ -149,6 +150,7 @@ struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
m_unshuffledInputStrides[i] =
m_unshuffledInputStrides[i + 1] * input_dims[i + 1];
m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
+ m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
}
}
@@ -319,14 +321,14 @@ struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_outputStrides[i];
+ const Index idx = index / m_fastOutputStrides[i];
inputIndex += idx * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
return inputIndex + index * m_inputStrides[0];
} else {
for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_outputStrides[i];
+ const Index idx = index / m_fastOutputStrides[i];
inputIndex += idx * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
@@ -338,6 +340,7 @@ struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
Dimensions m_dimensions;
array<Index, NumDims> m_inverseShuffle;
array<Index, NumDims> m_outputStrides;
+ array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
array<Index, NumDims> m_inputStrides;
array<Index, NumDims> m_unshuffledInputStrides;
TensorEvaluator<ArgType, Device> m_impl;
diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h
new file mode 100644
index 0000000000..44aff63702
--- /dev/null
+++ b/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h
@@ -0,0 +1,232 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
+#define EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
+
+namespace Eigen {
+namespace internal {
+
+template <uint64_t n>
+struct static_val {
+ static const uint64_t value = n;
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator uint64_t() const { return n; }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val() { }
+ template <typename T>
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val(const T& v) {
+ eigen_assert(v == n);
+ }
+};
+
+
+template <typename HIGH = uint64_t, typename LOW = uint64_t>
+struct TensorUInt128
+{
+ HIGH high;
+ LOW low;
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ TensorUInt128(int x) : high(0), low(x) {
+ eigen_assert(x >= 0);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ TensorUInt128(int64_t x) : high(0), low(x) {
+ eigen_assert(x >= 0);
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ TensorUInt128(uint64_t x) : high(0), low(x) { }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+ TensorUInt128(uint64_t y, uint64_t x) : high(y), low(x) { }
+
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator LOW() const {
+ return low;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LOW lower() const {
+ return low;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HIGH upper() const {
+ return high;
+ }
+};
+
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+static bool operator == (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ return (lhs.high == rhs.high) & (lhs.low == rhs.low);
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+static bool operator != (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ return (lhs.high != rhs.high) | (lhs.low != rhs.low);
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+static bool operator >= (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ if (lhs.high != rhs.high) {
+ return lhs.high > rhs.high;
+ }
+ return lhs.low >= rhs.low;
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+static bool operator < (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ if (lhs.high != rhs.high) {
+ return lhs.high < rhs.high;
+ }
+ return lhs.low < rhs.low;
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+static TensorUInt128<uint64_t, uint64_t> operator + (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ TensorUInt128<uint64_t, uint64_t> result(lhs.high + rhs.high, lhs.low + rhs.low);
+ if (result.low < rhs.low) {
+ result.high += 1;
+ }
+ return result;
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+static TensorUInt128<uint64_t, uint64_t> operator - (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ TensorUInt128<uint64_t, uint64_t> result(lhs.high - rhs.high, lhs.low - rhs.low);
+ if (result.low > lhs.low) {
+ result.high -= 1;
+ }
+ return result;
+}
+
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+static TensorUInt128<uint64_t, uint64_t> operator * (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ // Split each 128-bit integer into 4 32-bit integers, and then do the
+ // multiplications by hand as follow:
+ // lhs a b c d
+ // rhs e f g h
+ // -----------
+ // ah bh ch dh
+ // bg cg dg
+ // cf df
+ // de
+ // The result is stored in 2 64bit integers, high and low.
+
+ const uint64_t LOW = 0x00000000FFFFFFFFLL;
+ const uint64_t HIGH = 0xFFFFFFFF00000000LL;
+
+ uint64_t d = lhs.low & LOW;
+ uint64_t c = (lhs.low & HIGH) >> 32LL;
+ uint64_t b = lhs.high & LOW;
+ uint64_t a = (lhs.high & HIGH) >> 32LL;
+
+ uint64_t h = rhs.low & LOW;
+ uint64_t g = (rhs.low & HIGH) >> 32LL;
+ uint64_t f = rhs.high & LOW;
+ uint64_t e = (rhs.high & HIGH) >> 32LL;
+
+ // Compute the low 32 bits of low
+ uint64_t acc = d * h;
+ uint64_t low = acc & LOW;
+ // Compute the high 32 bits of low. Add a carry every time we wrap around
+ acc >>= 32LL;
+ uint64_t carry = 0;
+ uint64_t acc2 = acc + c * h;
+ if (acc2 < acc) {
+ carry++;
+ }
+ acc = acc2 + d * g;
+ if (acc < acc2) {
+ carry++;
+ }
+ low |= (acc << 32LL);
+
+ // Carry forward the high bits of acc to initiate the computation of the
+ // low 32 bits of high
+ acc2 = (acc >> 32LL) | (carry << 32LL);
+ carry = 0;
+
+ acc = acc2 + b * h;
+ if (acc < acc2) {
+ carry++;
+ }
+ acc2 = acc + c * g;
+ if (acc2 < acc) {
+ carry++;
+ }
+ acc = acc2 + d * f;
+ if (acc < acc2) {
+ carry++;
+ }
+ uint64_t high = acc & LOW;
+
+ // Start to compute the high 32 bits of high.
+ acc2 = (acc >> 32LL) | (carry << 32LL);
+
+ acc = acc2 + a * h;
+ acc2 = acc + b * g;
+ acc = acc2 + c * f;
+ acc2 = acc + d * e;
+ high |= (acc2 << 32LL);
+
+ return TensorUInt128<uint64_t, uint64_t>(high, low);
+}
+
+template <typename HL, typename LL, typename HR, typename LR>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+static TensorUInt128<uint64_t, uint64_t> operator / (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
+{
+ if (rhs == TensorUInt128<static_val<0>, static_val<1> >(1)) {
+ return TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low);
+ } else if (lhs < rhs) {
+ return TensorUInt128<uint64_t, uint64_t>(0);
+ } else {
+ // calculate the biggest power of 2 times rhs that's less than or equal to lhs
+ TensorUInt128<uint64_t, uint64_t> power2(1);
+ TensorUInt128<uint64_t, uint64_t> d(rhs);
+ TensorUInt128<uint64_t, uint64_t> tmp(lhs - d);
+ while (lhs >= d) {
+ tmp = tmp - d;
+ d = d + d;
+ power2 = power2 + power2;
+ }
+
+ tmp = TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low);
+ TensorUInt128<uint64_t, uint64_t> result(0);
+ while (power2 != TensorUInt128<static_val<0>, static_val<0> >(0)) {
+ if (tmp >= d) {
+ tmp = tmp - d;
+ result = result + power2;
+ }
+ // Shift right
+ power2 = TensorUInt128<uint64_t, uint64_t>(power2.high >> 1, (power2.low >> 1) | (power2.high << 63));
+ d = TensorUInt128<uint64_t, uint64_t>(d.high >> 1, (d.low >> 1) | (d.high << 63));
+ }
+
+ return result;
+ }
+}
+
+
+} // namespace internal
+} // namespace Eigen
+
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_UINT128_H