aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/go
diff options
context:
space:
mode:
authorGravatar A. Unique TensorFlower <gardener@tensorflow.org>2018-08-11 15:46:10 -0700
committerGravatar TensorFlower Gardener <gardener@tensorflow.org>2018-08-11 15:50:36 -0700
commitd8802756db92bbf032c1d8ee6fbed1aaf873c8fa (patch)
treed5c2ae22b750e6acc264beecfe71e33029368ecf /tensorflow/go
parent2cbcc471d6340fac1ceca9b9559f62ec2d71a769 (diff)
Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 208356344
Diffstat (limited to 'tensorflow/go')
-rw-r--r--tensorflow/go/op/wrappers.go262
1 files changed, 131 insertions, 131 deletions
diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go
index 9015cd616c..3e0ea619e3 100644
--- a/tensorflow/go/op/wrappers.go
+++ b/tensorflow/go/op/wrappers.go
@@ -4037,64 +4037,76 @@ func SlideDataset(scope *Scope, input_dataset tf.Output, window_size tf.Output,
return op.Output(0)
}
-// Computes the sum along sparse segments of a tensor divided by the sqrt of N.
-//
-// N is the size of the segment being reduced.
-//
-// Like `SparseSegmentSqrtN`, but allows missing ids in `segment_ids`. If an id is
-// misisng, the `output` tensor at that position will be zeroed.
-//
-// Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of
-// segments.
-//
-// Arguments:
-//
-// indices: A 1-D tensor. Has same rank as `segment_ids`.
-// segment_ids: A 1-D tensor. Values should be sorted and can be repeated.
-// num_segments: Should equal the number of distinct segment IDs.
+// FusedBatchNormAttr is an optional argument to FusedBatchNorm.
+type FusedBatchNormAttr func(optionalAttr)
+
+// FusedBatchNormEpsilon sets the optional epsilon attribute to value.
//
-// Returns Has same shape as data, except for dimension 0 which
-// has size `k`, the number of segments.
-func SparseSegmentSqrtNWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) {
- if scope.Err() != nil {
- return
- }
- opspec := tf.OpSpec{
- Type: "SparseSegmentSqrtNWithNumSegments",
- Input: []tf.Input{
- data, indices, segment_ids, num_segments,
- },
+// value: A small float number added to the variance of x.
+// If not specified, defaults to 0.0001
+func FusedBatchNormEpsilon(value float32) FusedBatchNormAttr {
+ return func(m optionalAttr) {
+ m["epsilon"] = value
}
- op := scope.AddOperation(opspec)
- return op.Output(0)
}
-// Compute the upper regularized incomplete Gamma function `Q(a, x)`.
-//
-// The upper regularized incomplete Gamma function is defined as:
+// FusedBatchNormDataFormat sets the optional data_format attribute to value.
//
-// \\(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\\)
+// value: The data format for x and y. Either "NHWC" (default) or "NCHW".
+// If not specified, defaults to "NHWC"
+func FusedBatchNormDataFormat(value string) FusedBatchNormAttr {
+ return func(m optionalAttr) {
+ m["data_format"] = value
+ }
+}
+
+// FusedBatchNormIsTraining sets the optional is_training attribute to value.
//
-// where
+// value: A bool value to indicate the operation is for training (default)
+// or inference.
+// If not specified, defaults to true
+func FusedBatchNormIsTraining(value bool) FusedBatchNormAttr {
+ return func(m optionalAttr) {
+ m["is_training"] = value
+ }
+}
+
+// Batch normalization.
//
-// \\(Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt\\)
+// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW".
+// The size of 1D Tensors matches the dimension C of the 4D Tensors.
//
-// is the upper incomplete Gama function.
+// Arguments:
+// x: A 4D Tensor for input data.
+// scale: A 1D Tensor for scaling factor, to scale the normalized x.
+// offset: A 1D Tensor for offset, to shift to the normalized x.
+// mean: A 1D Tensor for population mean. Used for inference only;
+// must be empty for training.
+// variance: A 1D Tensor for population variance. Used for inference only;
+// must be empty for training.
//
-// Note, above `P(a, x)` (`Igamma`) is the lower regularized complete
-// Gamma function.
-func Igammac(scope *Scope, a tf.Output, x tf.Output) (z tf.Output) {
+// Returns A 4D Tensor for output data.A 1D Tensor for the computed batch mean, to be used by TensorFlow
+// to compute the running mean.A 1D Tensor for the computed batch variance, to be used by
+// TensorFlow to compute the running variance.A 1D Tensor for the computed batch mean, to be reused
+// in the gradient computation.A 1D Tensor for the computed batch variance (inverted variance
+// in the cuDNN case), to be reused in the gradient computation.
+func FusedBatchNorm(scope *Scope, x tf.Output, scale tf.Output, offset tf.Output, mean tf.Output, variance tf.Output, optional ...FusedBatchNormAttr) (y tf.Output, batch_mean tf.Output, batch_variance tf.Output, reserve_space_1 tf.Output, reserve_space_2 tf.Output) {
if scope.Err() != nil {
return
}
+ attrs := map[string]interface{}{}
+ for _, a := range optional {
+ a(attrs)
+ }
opspec := tf.OpSpec{
- Type: "Igammac",
+ Type: "FusedBatchNorm",
Input: []tf.Input{
- a, x,
+ x, scale, offset, mean, variance,
},
+ Attrs: attrs,
}
op := scope.AddOperation(opspec)
- return op.Output(0)
+ return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4)
}
// ApproximateEqualAttr is an optional argument to ApproximateEqual.
@@ -13975,6 +13987,24 @@ func BoostedTreesPredict(scope *Scope, tree_ensemble_handle tf.Output, bucketize
return op.Output(0)
}
+// Elementwise computes the bitwise OR of `x` and `y`.
+//
+// The result will have those bits set, that are set in `x`, `y` or both. The
+// computation is performed on the underlying representations of `x` and `y`.
+func BitwiseOr(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) {
+ if scope.Err() != nil {
+ return
+ }
+ opspec := tf.OpSpec{
+ Type: "BitwiseOr",
+ Input: []tf.Input{
+ x, y,
+ },
+ }
+ op := scope.AddOperation(opspec)
+ return op.Output(0)
+}
+
// MatrixSolveLsAttr is an optional argument to MatrixSolveLs.
type MatrixSolveLsAttr func(optionalAttr)
@@ -14052,24 +14082,6 @@ func MatrixSolveLs(scope *Scope, matrix tf.Output, rhs tf.Output, l2_regularizer
return op.Output(0)
}
-// Elementwise computes the bitwise OR of `x` and `y`.
-//
-// The result will have those bits set, that are set in `x`, `y` or both. The
-// computation is performed on the underlying representations of `x` and `y`.
-func BitwiseOr(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) {
- if scope.Err() != nil {
- return
- }
- opspec := tf.OpSpec{
- Type: "BitwiseOr",
- Input: []tf.Input{
- x, y,
- },
- }
- op := scope.AddOperation(opspec)
- return op.Output(0)
-}
-
// MaxPool3DAttr is an optional argument to MaxPool3D.
type MaxPool3DAttr func(optionalAttr)
@@ -16062,78 +16074,6 @@ func Sigmoid(scope *Scope, x tf.Output) (y tf.Output) {
return op.Output(0)
}
-// FusedBatchNormAttr is an optional argument to FusedBatchNorm.
-type FusedBatchNormAttr func(optionalAttr)
-
-// FusedBatchNormEpsilon sets the optional epsilon attribute to value.
-//
-// value: A small float number added to the variance of x.
-// If not specified, defaults to 0.0001
-func FusedBatchNormEpsilon(value float32) FusedBatchNormAttr {
- return func(m optionalAttr) {
- m["epsilon"] = value
- }
-}
-
-// FusedBatchNormDataFormat sets the optional data_format attribute to value.
-//
-// value: The data format for x and y. Either "NHWC" (default) or "NCHW".
-// If not specified, defaults to "NHWC"
-func FusedBatchNormDataFormat(value string) FusedBatchNormAttr {
- return func(m optionalAttr) {
- m["data_format"] = value
- }
-}
-
-// FusedBatchNormIsTraining sets the optional is_training attribute to value.
-//
-// value: A bool value to indicate the operation is for training (default)
-// or inference.
-// If not specified, defaults to true
-func FusedBatchNormIsTraining(value bool) FusedBatchNormAttr {
- return func(m optionalAttr) {
- m["is_training"] = value
- }
-}
-
-// Batch normalization.
-//
-// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW".
-// The size of 1D Tensors matches the dimension C of the 4D Tensors.
-//
-// Arguments:
-// x: A 4D Tensor for input data.
-// scale: A 1D Tensor for scaling factor, to scale the normalized x.
-// offset: A 1D Tensor for offset, to shift to the normalized x.
-// mean: A 1D Tensor for population mean. Used for inference only;
-// must be empty for training.
-// variance: A 1D Tensor for population variance. Used for inference only;
-// must be empty for training.
-//
-// Returns A 4D Tensor for output data.A 1D Tensor for the computed batch mean, to be used by TensorFlow
-// to compute the running mean.A 1D Tensor for the computed batch variance, to be used by
-// TensorFlow to compute the running variance.A 1D Tensor for the computed batch mean, to be reused
-// in the gradient computation.A 1D Tensor for the computed batch variance (inverted variance
-// in the cuDNN case), to be reused in the gradient computation.
-func FusedBatchNorm(scope *Scope, x tf.Output, scale tf.Output, offset tf.Output, mean tf.Output, variance tf.Output, optional ...FusedBatchNormAttr) (y tf.Output, batch_mean tf.Output, batch_variance tf.Output, reserve_space_1 tf.Output, reserve_space_2 tf.Output) {
- if scope.Err() != nil {
- return
- }
- attrs := map[string]interface{}{}
- for _, a := range optional {
- a(attrs)
- }
- opspec := tf.OpSpec{
- Type: "FusedBatchNorm",
- Input: []tf.Input{
- x, scale, offset, mean, variance,
- },
- Attrs: attrs,
- }
- op := scope.AddOperation(opspec)
- return op.Output(0), op.Output(1), op.Output(2), op.Output(3), op.Output(4)
-}
-
// RandomStandardNormalAttr is an optional argument to RandomStandardNormal.
type RandomStandardNormalAttr func(optionalAttr)
@@ -20608,6 +20548,66 @@ func RandomUniformInt(scope *Scope, shape tf.Output, minval tf.Output, maxval tf
return op.Output(0)
}
+// Compute the upper regularized incomplete Gamma function `Q(a, x)`.
+//
+// The upper regularized incomplete Gamma function is defined as:
+//
+// \\(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\\)
+//
+// where
+//
+// \\(Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt\\)
+//
+// is the upper incomplete Gama function.
+//
+// Note, above `P(a, x)` (`Igamma`) is the lower regularized complete
+// Gamma function.
+func Igammac(scope *Scope, a tf.Output, x tf.Output) (z tf.Output) {
+ if scope.Err() != nil {
+ return
+ }
+ opspec := tf.OpSpec{
+ Type: "Igammac",
+ Input: []tf.Input{
+ a, x,
+ },
+ }
+ op := scope.AddOperation(opspec)
+ return op.Output(0)
+}
+
+// Computes the sum along sparse segments of a tensor divided by the sqrt of N.
+//
+// N is the size of the segment being reduced.
+//
+// Like `SparseSegmentSqrtN`, but allows missing ids in `segment_ids`. If an id is
+// misisng, the `output` tensor at that position will be zeroed.
+//
+// Read @{$math_ops#Segmentation$the section on segmentation} for an explanation of
+// segments.
+//
+// Arguments:
+//
+// indices: A 1-D tensor. Has same rank as `segment_ids`.
+// segment_ids: A 1-D tensor. Values should be sorted and can be repeated.
+// num_segments: Should equal the number of distinct segment IDs.
+//
+// Returns Has same shape as data, except for dimension 0 which
+// has size `k`, the number of segments.
+func SparseSegmentSqrtNWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) {
+ if scope.Err() != nil {
+ return
+ }
+ opspec := tf.OpSpec{
+ Type: "SparseSegmentSqrtNWithNumSegments",
+ Input: []tf.Input{
+ data, indices, segment_ids, num_segments,
+ },
+ }
+ op := scope.AddOperation(opspec)
+ return op.Output(0)
+}
+
// Computes gradients for SparseSegmentSqrtN.
//
// Returns tensor "output" with same shape as grad, except for dimension 0 whose