aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/docs_src
diff options
context:
space:
mode:
authorGravatar A. Unique TensorFlower <gardener@tensorflow.org>2018-08-01 21:44:02 -0700
committerGravatar TensorFlower Gardener <gardener@tensorflow.org>2018-08-01 21:48:45 -0700
commite3bcc0aa6e52867d9a12d9efded921325ecc5966 (patch)
treec4fe57f956fe9334f1e27342a4846250e915fe4a /tensorflow/docs_src
parent3379bae787d73d6db67d66a284bd1a076b2cbdba (diff)
[XLA] Add Scatter HLO.
PiperOrigin-RevId: 207045468
Diffstat (limited to 'tensorflow/docs_src')
-rw-r--r--tensorflow/docs_src/performance/xla/operation_semantics.md132
1 files changed, 132 insertions, 0 deletions
diff --git a/tensorflow/docs_src/performance/xla/operation_semantics.md b/tensorflow/docs_src/performance/xla/operation_semantics.md
index 5f7482f90f..3981aaaf75 100644
--- a/tensorflow/docs_src/performance/xla/operation_semantics.md
+++ b/tensorflow/docs_src/performance/xla/operation_semantics.md
@@ -1801,6 +1801,138 @@ is implementation-defined.
: : : limit of interval :
| `shape` | `Shape` | Output shape of type T |
+## Scatter
+
+The XLA scatter operation generates a result which is the value of the input
+tensor `operand`, with several slices (at indices specified by
+`scatter_indices`) updated with the values in `updates` using
+`update_computation`.
+
+See also
+[`XlaBuilder::Scatter`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/xla_client/xla_builder.h).
+
+<b> `scatter(operand, scatter_indices, updates, update_computation, index_vector_dim, update_window_dims, inserted_window_dims, scatter_dims_to_operand_dims)` </b>
+
+|Arguments | Type | Semantics |
+|------------------|------------------------|----------------------------------|
+|`operand` | `XlaOp` | Tensor to be scattered into. |
+|`scatter_indices` | `XlaOp` | Tensor containing the starting |
+: : : indices of the slices that must :
+: : : be scattered to. :
+|`updates` | `XlaOp` | Tensor containing the values that|
+: : : must be used for scattering. :
+|`update_computation`| `XlaComputation` | Computation to be used for |
+: : : combining the existing values in :
+: : : the input tensor and the updates :
+: : : during scatter. This computation :
+: : : should be of type `T, T -> T`. :
+|`index_vector_dim`| `int64` | The dimension in |
+: : : `scatter_indices` that contains :
+: : : the starting indices. :
+|`update_window_dims`| `ArraySlice<int64>` | The set of dimensions in |
+: : : `updates` shape that are _window :
+: : : dimensions_. :
+|`inserted_window_dims`| `ArraySlice<int64>`| The set of _window dimensions_ |
+: : : that must be inserted into :
+: : : `updates` shape. :
+|`scatter_dims_to_operand_dims`| `ArraySlice<int64>` | A dimensions map from |
+: : : the scatter indices to the :
+: : : operand index space. This array :
+: : : is interpreted as mapping `i` to :
+: : : `scatter_dims_to_operand_dims[i]`:
+: : : . It has to be one-to-one and :
+: : : total. :
+
+If `index_vector_dim` is equal to `scatter_indices.rank` we implicitly consider
+`scatter_indices` to have a trailing `1` dimension.
+
+We define `update_scatter_dims` of type `ArraySlice<int64>` as the set of
+dimensions in `updates` shape that are not in `update_window_dims`, in ascending
+order.
+
+The arguments of scatter should follow these constraints:
+
+ - `updates` tensor must be of rank `update_window_dims.size +
+ scatter_indices.rank - 1`.
+
+ - Bounds of dimension `i` in `updates` must conform to the following:
+ - If `i` is present in `update_window_dims` (i.e. equal to
+ `update_window_dims`[`k`] for some `k`), then the bound of dimension
+ `i` in `updates` must not exceed the corresponding bound of `operand`
+ after accounting for the `inserted_window_dims` (i.e.
+ `adjusted_window_bounds`[`k`], where `adjusted_window_bounds` contains
+ the bounds of `operand` with the bounds at indices
+ `inserted_window_dims` removed).
+ - If `i` is present in `update_scatter_dims` (i.e. equal to
+ `update_scatter_dims`[`k`] for some `k`), then the bound of dimension
+ `i` in `updates` must be equal to the corresponding bound of
+ `scatter_indices`, skipping `index_vector_dim` (i.e.
+ `scatter_indices.shape.dims`[`k`], if `k` < `index_vector_dim` and
+ `scatter_indices.shape.dims`[`k+1`] otherwise).
+
+ - `update_window_dims` must be in ascending order, not have any repeating
+ dimension numbers, and be in the range `[0, updates.rank)`.
+
+ - `inserted_window_dims` must be in ascending order, not have any
+ repeating dimension numbers, and be in the range `[0, operand.rank)`.
+
+ - `scatter_dims_to_operand_dims.size` must be equal to
+ `scatter_indices`[`index_vector_dim`], and its values must be in the range
+ `[0, operand.rank)`.
+
+For a given index `U` in the `updates` tensor, the corresponding index `I` in
+the `operand` tensor into which this update has to be applied is computed as
+follows:
+
+ 1. Let `G` = { `U`[`k`] for `k` in `update_scatter_dims` }. Use `G` to look up
+ an index vector `S` in the `scatter_indices` tensor such that `S`[`i`] =
+ `scatter_indices`[Combine(`G`, `i`)] where Combine(A, b) inserts b at
+ positions `index_vector_dim` into A.
+ 2. Create an index `S`<sub>`in`</sub> into `operand` using `S` by scattering
+ `S` using the `scatter_dims_to_operand_dims` map. More formally:
+ 1. `S`<sub>`in`</sub>[`scatter_dims_to_operand_dims`[`k`]] = `S`[`k`] if
+ `k` < `scatter_dims_to_operand_dims.size`.
+ 2. `S`<sub>`in`</sub>[`_`] = `0` otherwise.
+ 3. Create an index `W`<sub>`in`</sub> into `operand` by scattering the indices
+ at `update_window_dims` in `U` according to `inserted_window_dims`.
+ More formally:
+ 1. `W`<sub>`in`</sub>[`window_dims_to_operand_dims`(`k`)] = `U`[`k`] if
+ `k` < `update_window_dims.size`, where `window_dims_to_operand_dims`
+ is the monotonic function with domain [`0`, `update_window_dims.size`)
+ and range [`0`, `operand.rank`) \\ `inserted_window_dims`. (For
+ example, if `update_window_dims.size` is `4`, `operand.rank` is `6`,
+ and `inserted_window_dims` is {`0`, `2`} then
+ `window_dims_to_operand_dims` is {`0`→`1`, `1`→`3`, `2`→`4`,
+ `3`→`5`}).
+ 2. `W`<sub>`in`</sub>[`_`] = `0` otherwise.
+ 4. `I` is `W`<sub>`in`</sub> + `S`<sub>`in`</sub> where + is element-wise
+ addition.
+
+In summary, the scatter operation can be defined as follows.
+
+ - Initialize `output` with `operand`, i.e. for all indices `O` in the
+ `operand` tensor:\
+ `output`[`O`] = `operand`[`O`]
+ - For every index `U` in the `updates` tensor and the corresponding index `O`
+ in the `operand` tensor:\
+ `output`[`O`] = `update_computation`(`output`[`O`], `updates`[`U`])
+
+The order in which updates are applied is non-deterministic. So, when multiple
+indices in `updates` refer to the same index in `operand`, the corresponding
+value in `output` will be non-deterministic.
+
+Note that the first parameter that is passed into the `update_computation` will
+always be the current value from the `output` tensor and the second parameter
+will always be the value from the `updates` tensor. This is important
+specifically for cases when the `update_computation` is _not commutative_.
+
+Informally, the scatter op can be viewed as an _inverse_ of the gather op, i.e.
+the scatter op updates the elements in the input that are extracted by the
+corresponding gather op.
+
+For a detailed informal description and examples, refer to the
+"Informal Description" section under `Gather`.
+
## Select
See also