diff options
author | A. Unique TensorFlower <gardener@tensorflow.org> | 2018-10-09 17:46:22 -0700 |
---|---|---|
committer | TensorFlower Gardener <gardener@tensorflow.org> | 2018-10-09 17:50:08 -0700 |
commit | 75ee5ee51314feef5654ef315960c26d27d657a5 (patch) | |
tree | d419ff0ff754c0a36b6b5fe22ddccd3579cb1088 | |
parent | f0784e69761ef5b78480e9e8b1fd1aa558186646 (diff) |
Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 216455250
-rw-r--r-- | tensorflow/go/op/wrappers.go | 111 |
1 files changed, 56 insertions, 55 deletions
diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go index f35117084a..c6ecd75587 100644 --- a/tensorflow/go/op/wrappers.go +++ b/tensorflow/go/op/wrappers.go @@ -4562,6 +4562,59 @@ func CTCBeamSearchDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Out return decoded_indices, decoded_values, decoded_shape, log_probability } +// CTCGreedyDecoderAttr is an optional argument to CTCGreedyDecoder. +type CTCGreedyDecoderAttr func(optionalAttr) + +// CTCGreedyDecoderMergeRepeated sets the optional merge_repeated attribute to value. +// +// value: If True, merge repeated classes in output. +// If not specified, defaults to false +func CTCGreedyDecoderMergeRepeated(value bool) CTCGreedyDecoderAttr { + return func(m optionalAttr) { + m["merge_repeated"] = value + } +} + +// Performs greedy decoding on the logits given in inputs. +// +// A note about the attribute merge_repeated: if enabled, when +// consecutive logits' maximum indices are the same, only the first of +// these is emitted. Labeling the blank '*', the sequence "A B B * B B" +// becomes "A B B" if merge_repeated = True and "A B B B B" if +// merge_repeated = False. +// +// Regardless of the value of merge_repeated, if the maximum index of a given +// time and batch corresponds to the blank, index `(num_classes - 1)`, no new +// element is emitted. +// +// Arguments: +// inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. +// sequence_length: A vector containing sequence lengths, size `(batch_size)`. +// +// Returns Indices matrix, size `(total_decoded_outputs x 2)`, +// of a `SparseTensor<int64, 2>`. The rows store: [batch, time].Values vector, size: `(total_decoded_outputs)`, +// of a `SparseTensor<int64, 2>`. The vector stores the decoded classes.Shape vector, size `(2)`, of the decoded SparseTensor. +// Values are: `[batch_size, max_decoded_length]`.Matrix, size `(batch_size x 1)`, containing sequence +// log-probabilities. +func CTCGreedyDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Output, optional ...CTCGreedyDecoderAttr) (decoded_indices tf.Output, decoded_values tf.Output, decoded_shape tf.Output, log_probability tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "CTCGreedyDecoder", + Input: []tf.Input{ + inputs, sequence_length, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2), op.Output(3) +} + // ResourceStridedSliceAssignAttr is an optional argument to ResourceStridedSliceAssign. type ResourceStridedSliceAssignAttr func(optionalAttr) @@ -18904,10 +18957,11 @@ func MutableDenseHashTableV2MaxLoadFactor(value float32) MutableDenseHashTableV2 // Arguments: // empty_key: The key used to represent empty key buckets internally. Must not // be used in insert or lookup operations. +// // value_dtype: Type of the table values. // // Returns Handle to a table. -func MutableDenseHashTableV2(scope *Scope, empty_key tf.Output, value_dtype tf.DataType, optional ...MutableDenseHashTableV2Attr) (table_handle tf.Output) { +func MutableDenseHashTableV2(scope *Scope, empty_key tf.Output, deleted_key tf.Output, value_dtype tf.DataType, optional ...MutableDenseHashTableV2Attr) (table_handle tf.Output) { if scope.Err() != nil { return } @@ -18918,7 +18972,7 @@ func MutableDenseHashTableV2(scope *Scope, empty_key tf.Output, value_dtype tf.D opspec := tf.OpSpec{ Type: "MutableDenseHashTableV2", Input: []tf.Input{ - empty_key, + empty_key, deleted_key, }, Attrs: attrs, } @@ -33104,56 +33158,3 @@ func CTCLoss(scope *Scope, inputs tf.Output, labels_indices tf.Output, labels_va op := scope.AddOperation(opspec) return op.Output(0), op.Output(1) } - -// CTCGreedyDecoderAttr is an optional argument to CTCGreedyDecoder. -type CTCGreedyDecoderAttr func(optionalAttr) - -// CTCGreedyDecoderMergeRepeated sets the optional merge_repeated attribute to value. -// -// value: If True, merge repeated classes in output. -// If not specified, defaults to false -func CTCGreedyDecoderMergeRepeated(value bool) CTCGreedyDecoderAttr { - return func(m optionalAttr) { - m["merge_repeated"] = value - } -} - -// Performs greedy decoding on the logits given in inputs. -// -// A note about the attribute merge_repeated: if enabled, when -// consecutive logits' maximum indices are the same, only the first of -// these is emitted. Labeling the blank '*', the sequence "A B B * B B" -// becomes "A B B" if merge_repeated = True and "A B B B B" if -// merge_repeated = False. -// -// Regardless of the value of merge_repeated, if the maximum index of a given -// time and batch corresponds to the blank, index `(num_classes - 1)`, no new -// element is emitted. -// -// Arguments: -// inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. -// sequence_length: A vector containing sequence lengths, size `(batch_size)`. -// -// Returns Indices matrix, size `(total_decoded_outputs x 2)`, -// of a `SparseTensor<int64, 2>`. The rows store: [batch, time].Values vector, size: `(total_decoded_outputs)`, -// of a `SparseTensor<int64, 2>`. The vector stores the decoded classes.Shape vector, size `(2)`, of the decoded SparseTensor. -// Values are: `[batch_size, max_decoded_length]`.Matrix, size `(batch_size x 1)`, containing sequence -// log-probabilities. -func CTCGreedyDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Output, optional ...CTCGreedyDecoderAttr) (decoded_indices tf.Output, decoded_values tf.Output, decoded_shape tf.Output, log_probability tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "CTCGreedyDecoder", - Input: []tf.Input{ - inputs, sequence_length, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2), op.Output(3) -} |