aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar A. Unique TensorFlower <gardener@tensorflow.org>2017-05-24 14:40:05 -0700
committerGravatar TensorFlower Gardener <gardener@tensorflow.org>2017-05-24 14:43:49 -0700
commit6250204a85445d76de75b9963681c5957a656ed0 (patch)
tree64ee632b8c4fbf4a5718f4308ba15adba04e14d2
parentc5076bcea990d5963623af05235c8eb2bf1d7cec (diff)
Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 157039326
-rw-r--r--tensorflow/go/op/wrappers.go198
1 files changed, 121 insertions, 77 deletions
diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go
index 1ecab3e8e2..60d08d3c10 100644
--- a/tensorflow/go/op/wrappers.go
+++ b/tensorflow/go/op/wrappers.go
@@ -2326,83 +2326,6 @@ func ParallelConcat(scope *Scope, values []tf.Output, shape tf.Shape) (output tf
return op.Output(0)
}
-// MfccAttr is an optional argument to Mfcc.
-type MfccAttr func(optionalAttr)
-
-// MfccUpperFrequencyLimit sets the optional upper_frequency_limit attribute to value.
-//
-// value: The highest frequency to use when calculating the
-// ceptstrum.
-// If not specified, defaults to 4000
-func MfccUpperFrequencyLimit(value float32) MfccAttr {
- return func(m optionalAttr) {
- m["upper_frequency_limit"] = value
- }
-}
-
-// MfccLowerFrequencyLimit sets the optional lower_frequency_limit attribute to value.
-//
-// value: The lowest frequency to use when calculating the
-// ceptstrum.
-// If not specified, defaults to 20
-func MfccLowerFrequencyLimit(value float32) MfccAttr {
- return func(m optionalAttr) {
- m["lower_frequency_limit"] = value
- }
-}
-
-// MfccFilterbankChannelCount sets the optional filterbank_channel_count attribute to value.
-//
-// value: Resolution of the Mel bank used internally.
-// If not specified, defaults to 40
-func MfccFilterbankChannelCount(value int64) MfccAttr {
- return func(m optionalAttr) {
- m["filterbank_channel_count"] = value
- }
-}
-
-// MfccDctCoefficientCount sets the optional dct_coefficient_count attribute to value.
-//
-// value: How many output channels to produce per time slice.
-// If not specified, defaults to 13
-func MfccDctCoefficientCount(value int64) MfccAttr {
- return func(m optionalAttr) {
- m["dct_coefficient_count"] = value
- }
-}
-
-// Transforms a spectrogram into a form that's useful for speech recognition.
-//
-// Mel Frequency Cepstral Coefficients are a way of representing audio data that's
-// been effective as an input feature for machine learning. They are created by
-// taking the spectrum of a spectrogram (a 'cepstrum'), and discarding some of the
-// higher frequencies that are less significant to the human ear. They have a long
-// history in the speech recognition world, and https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
-// is a good resource to learn more.
-//
-// Arguments:
-// spectrogram: Typically produced by the Spectrogram op, with magnitude_squared
-// set to true.
-// sample_rate: How many samples per second the source audio used.
-func Mfcc(scope *Scope, spectrogram tf.Output, sample_rate tf.Output, optional ...MfccAttr) (output tf.Output) {
- if scope.Err() != nil {
- return
- }
- attrs := map[string]interface{}{}
- for _, a := range optional {
- a(attrs)
- }
- opspec := tf.OpSpec{
- Type: "Mfcc",
- Input: []tf.Input{
- spectrogram, sample_rate,
- },
- Attrs: attrs,
- }
- op := scope.AddOperation(opspec)
- return op.Output(0)
-}
-
// UniqueAttr is an optional argument to Unique.
type UniqueAttr func(optionalAttr)
@@ -19411,6 +19334,127 @@ func Atan(scope *Scope, x tf.Output) (y tf.Output) {
return op.Output(0)
}
+// MfccAttr is an optional argument to Mfcc.
+type MfccAttr func(optionalAttr)
+
+// MfccUpperFrequencyLimit sets the optional upper_frequency_limit attribute to value.
+//
+// value: The highest frequency to use when calculating the
+// ceptstrum.
+// If not specified, defaults to 4000
+func MfccUpperFrequencyLimit(value float32) MfccAttr {
+ return func(m optionalAttr) {
+ m["upper_frequency_limit"] = value
+ }
+}
+
+// MfccLowerFrequencyLimit sets the optional lower_frequency_limit attribute to value.
+//
+// value: The lowest frequency to use when calculating the
+// ceptstrum.
+// If not specified, defaults to 20
+func MfccLowerFrequencyLimit(value float32) MfccAttr {
+ return func(m optionalAttr) {
+ m["lower_frequency_limit"] = value
+ }
+}
+
+// MfccFilterbankChannelCount sets the optional filterbank_channel_count attribute to value.
+//
+// value: Resolution of the Mel bank used internally.
+// If not specified, defaults to 40
+func MfccFilterbankChannelCount(value int64) MfccAttr {
+ return func(m optionalAttr) {
+ m["filterbank_channel_count"] = value
+ }
+}
+
+// MfccDctCoefficientCount sets the optional dct_coefficient_count attribute to value.
+//
+// value: How many output channels to produce per time slice.
+// If not specified, defaults to 13
+func MfccDctCoefficientCount(value int64) MfccAttr {
+ return func(m optionalAttr) {
+ m["dct_coefficient_count"] = value
+ }
+}
+
+// Transforms a spectrogram into a form that's useful for speech recognition.
+//
+// Mel Frequency Cepstral Coefficients are a way of representing audio data that's
+// been effective as an input feature for machine learning. They are created by
+// taking the spectrum of a spectrogram (a 'cepstrum'), and discarding some of the
+// higher frequencies that are less significant to the human ear. They have a long
+// history in the speech recognition world, and https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
+// is a good resource to learn more.
+//
+// Arguments:
+// spectrogram: Typically produced by the Spectrogram op, with magnitude_squared
+// set to true.
+// sample_rate: How many samples per second the source audio used.
+func Mfcc(scope *Scope, spectrogram tf.Output, sample_rate tf.Output, optional ...MfccAttr) (output tf.Output) {
+ if scope.Err() != nil {
+ return
+ }
+ attrs := map[string]interface{}{}
+ for _, a := range optional {
+ a(attrs)
+ }
+ opspec := tf.OpSpec{
+ Type: "Mfcc",
+ Input: []tf.Input{
+ spectrogram, sample_rate,
+ },
+ Attrs: attrs,
+ }
+ op := scope.AddOperation(opspec)
+ return op.Output(0)
+}
+
+// QuantizedAddAttr is an optional argument to QuantizedAdd.
+type QuantizedAddAttr func(optionalAttr)
+
+// QuantizedAddToutput sets the optional Toutput attribute to value.
+// If not specified, defaults to DT_QINT32
+func QuantizedAddToutput(value tf.DataType) QuantizedAddAttr {
+ return func(m optionalAttr) {
+ m["Toutput"] = value
+ }
+}
+
+// Returns x + y element-wise, working on quantized buffers.
+//
+// Arguments:
+//
+//
+// min_x: The float value that the lowest quantized `x` value represents.
+// max_x: The float value that the highest quantized `x` value represents.
+// min_y: The float value that the lowest quantized `y` value represents.
+// max_y: The float value that the highest quantized `y` value represents.
+//
+// Returns The float value that the lowest quantized output value represents.The float value that the highest quantized output value represents.
+//
+// *NOTE*: `QuantizedAdd` supports limited forms of broadcasting. More about
+// broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)
+func QuantizedAdd(scope *Scope, x tf.Output, y tf.Output, min_x tf.Output, max_x tf.Output, min_y tf.Output, max_y tf.Output, optional ...QuantizedAddAttr) (z tf.Output, min_z tf.Output, max_z tf.Output) {
+ if scope.Err() != nil {
+ return
+ }
+ attrs := map[string]interface{}{}
+ for _, a := range optional {
+ a(attrs)
+ }
+ opspec := tf.OpSpec{
+ Type: "QuantizedAdd",
+ Input: []tf.Input{
+ x, y, min_x, max_x, min_y, max_y,
+ },
+ Attrs: attrs,
+ }
+ op := scope.AddOperation(opspec)
+ return op.Output(0), op.Output(1), op.Output(2)
+}
+
// ResourceSparseApplyAdadeltaAttr is an optional argument to ResourceSparseApplyAdadelta.
type ResourceSparseApplyAdadeltaAttr func(optionalAttr)