aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar A. Unique TensorFlower <gardener@tensorflow.org>2017-07-10 16:50:01 -0700
committerGravatar TensorFlower Gardener <gardener@tensorflow.org>2017-07-10 16:59:36 -0700
commit277e0502a2afbff51dc21c496565b63d71c6a273 (patch)
tree122d50814af73a47b374d7b6fda6479cb6c6b360
parent0bfccd3994d7ee9cfee4dd1e337047ab6abbe25c (diff)
Update ops-related pbtxt files.
PiperOrigin-RevId: 161461239
-rw-r--r--tensorflow/core/ops/compat/ops_history.v1.pbtxt36
-rw-r--r--tensorflow/core/ops/ops.pbtxt38
2 files changed, 74 insertions, 0 deletions
diff --git a/tensorflow/core/ops/compat/ops_history.v1.pbtxt b/tensorflow/core/ops/compat/ops_history.v1.pbtxt
index e7a72b03c4..f872ef3cb5 100644
--- a/tensorflow/core/ops/compat/ops_history.v1.pbtxt
+++ b/tensorflow/core/ops/compat/ops_history.v1.pbtxt
@@ -15266,6 +15266,42 @@ op {
}
}
op {
+ name: "PadV2"
+ input_arg {
+ name: "input"
+ type_attr: "T"
+ }
+ input_arg {
+ name: "paddings"
+ type_attr: "Tpaddings"
+ }
+ input_arg {
+ name: "constant_values"
+ type_attr: "T"
+ }
+ output_arg {
+ name: "output"
+ type_attr: "T"
+ }
+ attr {
+ name: "T"
+ type: "type"
+ }
+ attr {
+ name: "Tpaddings"
+ type: "type"
+ default_value {
+ type: DT_INT32
+ }
+ allowed_values {
+ list {
+ type: DT_INT32
+ type: DT_INT64
+ }
+ }
+ }
+}
+op {
name: "PaddedBatchDataset"
input_arg {
name: "input_dataset"
diff --git a/tensorflow/core/ops/ops.pbtxt b/tensorflow/core/ops/ops.pbtxt
index 02553df448..0b10382471 100644
--- a/tensorflow/core/ops/ops.pbtxt
+++ b/tensorflow/core/ops/ops.pbtxt
@@ -14478,6 +14478,44 @@ op {
description: "This operation pads a `input` with zeros according to the `paddings` you\nspecify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the\nrank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates\nhow many zeros to add before the contents of `input` in that dimension, and\n`paddings[D, 1]` indicates how many zeros to add after the contents of `input`\nin that dimension.\n\nThe padded size of each dimension D of the output is:\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n```\n# \'t\' is [[1, 1], [2, 2]]\n# \'paddings\' is [[1, 1], [2, 2]]\n# rank of \'t\' is 2\npad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]\n [0, 0, 1, 1, 0, 0]\n [0, 0, 2, 2, 0, 0]\n [0, 0, 0, 0, 0, 0]]\n```"
}
op {
+ name: "PadV2"
+ input_arg {
+ name: "input"
+ type_attr: "T"
+ }
+ input_arg {
+ name: "paddings"
+ type_attr: "Tpaddings"
+ }
+ input_arg {
+ name: "constant_values"
+ type_attr: "T"
+ }
+ output_arg {
+ name: "output"
+ type_attr: "T"
+ }
+ attr {
+ name: "T"
+ type: "type"
+ }
+ attr {
+ name: "Tpaddings"
+ type: "type"
+ default_value {
+ type: DT_INT32
+ }
+ allowed_values {
+ list {
+ type: DT_INT32
+ type: DT_INT64
+ }
+ }
+ }
+ summary: "Pads a tensor."
+ description: "This operation pads `input` according to the `paddings` and `constant_values`\nyou specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is\nthe rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates\nhow many padding values to add before the contents of `input` in that dimension,\nand `paddings[D, 1]` indicates how many padding values to add after the contents\nof `input` in that dimension. `constant_values` is a scalar tensor of the same\ntype as `input` that indicates the value to use for padding `input`.\n\nThe padded size of each dimension D of the output is:\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n```\n# \'t\' is [[1, 1], [2, 2]]\n# \'paddings\' is [[1, 1], [2, 2]]\n# \'constant_values\' is 0\n# rank of \'t\' is 2\npad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]\n [0, 0, 1, 1, 0, 0]\n [0, 0, 2, 2, 0, 0]\n [0, 0, 0, 0, 0, 0]]\n```"
+}
+op {
name: "PaddedBatchDataset"
input_arg {
name: "input_dataset"