diff options
author | A. Unique TensorFlower <gardener@tensorflow.org> | 2017-07-10 16:50:01 -0700 |
---|---|---|
committer | TensorFlower Gardener <gardener@tensorflow.org> | 2017-07-10 16:59:36 -0700 |
commit | 277e0502a2afbff51dc21c496565b63d71c6a273 (patch) | |
tree | 122d50814af73a47b374d7b6fda6479cb6c6b360 | |
parent | 0bfccd3994d7ee9cfee4dd1e337047ab6abbe25c (diff) |
Update ops-related pbtxt files.
PiperOrigin-RevId: 161461239
-rw-r--r-- | tensorflow/core/ops/compat/ops_history.v1.pbtxt | 36 | ||||
-rw-r--r-- | tensorflow/core/ops/ops.pbtxt | 38 |
2 files changed, 74 insertions, 0 deletions
diff --git a/tensorflow/core/ops/compat/ops_history.v1.pbtxt b/tensorflow/core/ops/compat/ops_history.v1.pbtxt index e7a72b03c4..f872ef3cb5 100644 --- a/tensorflow/core/ops/compat/ops_history.v1.pbtxt +++ b/tensorflow/core/ops/compat/ops_history.v1.pbtxt @@ -15266,6 +15266,42 @@ op { } } op { + name: "PadV2" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "paddings" + type_attr: "Tpaddings" + } + input_arg { + name: "constant_values" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + } + attr { + name: "Tpaddings" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } +} +op { name: "PaddedBatchDataset" input_arg { name: "input_dataset" diff --git a/tensorflow/core/ops/ops.pbtxt b/tensorflow/core/ops/ops.pbtxt index 02553df448..0b10382471 100644 --- a/tensorflow/core/ops/ops.pbtxt +++ b/tensorflow/core/ops/ops.pbtxt @@ -14478,6 +14478,44 @@ op { description: "This operation pads a `input` with zeros according to the `paddings` you\nspecify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the\nrank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates\nhow many zeros to add before the contents of `input` in that dimension, and\n`paddings[D, 1]` indicates how many zeros to add after the contents of `input`\nin that dimension.\n\nThe padded size of each dimension D of the output is:\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n```\n# \'t\' is [[1, 1], [2, 2]]\n# \'paddings\' is [[1, 1], [2, 2]]\n# rank of \'t\' is 2\npad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]\n [0, 0, 1, 1, 0, 0]\n [0, 0, 2, 2, 0, 0]\n [0, 0, 0, 0, 0, 0]]\n```" } op { + name: "PadV2" + input_arg { + name: "input" + type_attr: "T" + } + input_arg { + name: "paddings" + type_attr: "Tpaddings" + } + input_arg { + name: "constant_values" + type_attr: "T" + } + output_arg { + name: "output" + type_attr: "T" + } + attr { + name: "T" + type: "type" + } + attr { + name: "Tpaddings" + type: "type" + default_value { + type: DT_INT32 + } + allowed_values { + list { + type: DT_INT32 + type: DT_INT64 + } + } + } + summary: "Pads a tensor." + description: "This operation pads `input` according to the `paddings` and `constant_values`\nyou specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is\nthe rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates\nhow many padding values to add before the contents of `input` in that dimension,\nand `paddings[D, 1]` indicates how many padding values to add after the contents\nof `input` in that dimension. `constant_values` is a scalar tensor of the same\ntype as `input` that indicates the value to use for padding `input`.\n\nThe padded size of each dimension D of the output is:\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n```\n# \'t\' is [[1, 1], [2, 2]]\n# \'paddings\' is [[1, 1], [2, 2]]\n# \'constant_values\' is 0\n# rank of \'t\' is 2\npad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]\n [0, 0, 1, 1, 0, 0]\n [0, 0, 2, 2, 0, 0]\n [0, 0, 0, 0, 0, 0]]\n```" +} +op { name: "PaddedBatchDataset" input_arg { name: "input_dataset" |