aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Scott Zhu <scottzhu@google.com>2018-08-01 11:03:11 -0700
committerGravatar TensorFlower Gardener <gardener@tensorflow.org>2018-08-01 11:11:37 -0700
commit24331e4fc0166d2adf3cf3b155844b5c77500a0c (patch)
treefb6d77af5eba48c1582d86905df06f5800613ed3
parent79bfcad510d0c57db1a78b44192647b8284cfce8 (diff)
Remove deprecated Recurrent class from RNN.
PiperOrigin-RevId: 206956778
-rw-r--r--tensorflow/python/keras/layers/recurrent.py337
1 files changed, 0 insertions, 337 deletions
diff --git a/tensorflow/python/keras/layers/recurrent.py b/tensorflow/python/keras/layers/recurrent.py
index 534c0eca08..a8bfdf25f2 100644
--- a/tensorflow/python/keras/layers/recurrent.py
+++ b/tensorflow/python/keras/layers/recurrent.py
@@ -23,7 +23,6 @@ import numbers
import numpy as np
from tensorflow.python.eager import context
-from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import activations
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import constraints
@@ -2231,342 +2230,6 @@ def _generate_dropout_mask(ones, rate, training=None, count=1):
return K.in_train_phase(dropped_inputs, ones, training=training)
-class Recurrent(Layer):
- """Deprecated abstract base class for recurrent layers.
-
- It still exists because it is leveraged by the convolutional-recurrent layers.
- It will be removed entirely in the future.
- It was never part of the public API.
- Do not use.
-
- Arguments:
- weights: list of Numpy arrays to set as initial weights.
- The list should have 3 elements, of shapes:
- `[(input_dim, output_dim), (output_dim, output_dim), (output_dim,)]`.
- return_sequences: Boolean. Whether to return the last output
- in the output sequence, or the full sequence.
- return_state: Boolean. Whether to return the last state
- in addition to the output.
- go_backwards: Boolean (default False).
- If True, process the input sequence backwards and return the
- reversed sequence.
- stateful: Boolean (default False). If True, the last state
- for each sample at index i in a batch will be used as initial
- state for the sample of index i in the following batch.
- unroll: Boolean (default False).
- If True, the network will be unrolled,
- else a symbolic loop will be used.
- Unrolling can speed-up a RNN,
- although it tends to be more memory-intensive.
- Unrolling is only suitable for short sequences.
- implementation: one of {0, 1, or 2}.
- If set to 0, the RNN will use
- an implementation that uses fewer, larger matrix products,
- thus running faster on CPU but consuming more memory.
- If set to 1, the RNN will use more matrix products,
- but smaller ones, thus running slower
- (may actually be faster on GPU) while consuming less memory.
- If set to 2 (LSTM/GRU only),
- the RNN will combine the input gate,
- the forget gate and the output gate into a single matrix,
- enabling more time-efficient parallelization on the GPU.
- Note: RNN dropout must be shared for all gates,
- resulting in a slightly reduced regularization.
- input_dim: dimensionality of the input (integer).
- This argument (or alternatively, the keyword argument `input_shape`)
- is required when using this layer as the first layer in a model.
- input_length: Length of input sequences, to be specified
- when it is constant.
- This argument is required if you are going to connect
- `Flatten` then `Dense` layers upstream
- (without it, the shape of the dense outputs cannot be computed).
- Note that if the recurrent layer is not the first layer
- in your model, you would need to specify the input length
- at the level of the first layer
- (e.g. via the `input_shape` argument)
-
- Input shape:
- 3D tensor with shape `(batch_size, timesteps, input_dim)`,
- (Optional) 2D tensors with shape `(batch_size, output_dim)`.
-
- Output shape:
- - if `return_state`: a list of tensors. The first tensor is
- the output. The remaining tensors are the last states,
- each with shape `(batch_size, units)`.
- - if `return_sequences`: 3D tensor with shape
- `(batch_size, timesteps, units)`.
- - else, 2D tensor with shape `(batch_size, units)`.
-
- # Masking
- This layer supports masking for input data with a variable number
- of timesteps. To introduce masks to your data,
- use an `Embedding` layer with the `mask_zero` parameter
- set to `True`.
-
- # Note on using statefulness in RNNs
- You can set RNN layers to be 'stateful', which means that the states
- computed for the samples in one batch will be reused as initial states
- for the samples in the next batch. This assumes a one-to-one mapping
- between samples in different successive batches.
-
- To enable statefulness:
- - specify `stateful=True` in the layer constructor.
- - specify a fixed batch size for your model, by passing
- if sequential model:
- `batch_input_shape=(...)` to the first layer in your model.
- else for functional model with 1 or more Input layers:
- `batch_shape=(...)` to all the first layers in your model.
- This is the expected shape of your inputs
- *including the batch size*.
- It should be a tuple of integers, e.g. `(32, 10, 100)`.
- - specify `shuffle=False` when calling fit().
-
- To reset the states of your model, call `.reset_states()` on either
- a specific layer, or on your entire model.
-
- # Note on specifying the initial state of RNNs
- You can specify the initial state of RNN layers symbolically by
- calling them with the keyword argument `initial_state`. The value of
- `initial_state` should be a tensor or list of tensors representing
- the initial state of the RNN layer.
-
- You can specify the initial state of RNN layers numerically by
- calling `reset_states` with the keyword argument `states`. The value of
- `states` should be a numpy array or list of numpy arrays representing
- the initial state of the RNN layer.
- """
-
- def __init__(self,
- return_sequences=False,
- return_state=False,
- go_backwards=False,
- stateful=False,
- unroll=False,
- implementation=0,
- **kwargs):
- super(Recurrent, self).__init__(**kwargs)
- self.return_sequences = return_sequences
- self.return_state = return_state
- self.go_backwards = go_backwards
- self.stateful = stateful
- self.unroll = unroll
- self.implementation = implementation
- self.supports_masking = True
- self.input_spec = [InputSpec(ndim=3)]
- self.state_spec = None
- self.dropout = 0
- self.recurrent_dropout = 0
-
- @tf_utils.shape_type_conversion
- def compute_output_shape(self, input_shape):
- if isinstance(input_shape, list):
- input_shape = input_shape[0]
- input_shape = tensor_shape.TensorShape(input_shape).as_list()
- if self.return_sequences:
- output_shape = (input_shape[0], input_shape[1], self.units)
- else:
- output_shape = (input_shape[0], self.units)
-
- if self.return_state:
- state_shape = [tensor_shape.TensorShape(
- (input_shape[0], self.units)) for _ in self.states]
- return [tensor_shape.TensorShape(output_shape)] + state_shape
- return tensor_shape.TensorShape(output_shape)
-
- def compute_mask(self, inputs, mask):
- if isinstance(mask, list):
- mask = mask[0]
- output_mask = mask if self.return_sequences else None
- if self.return_state:
- state_mask = [None for _ in self.states]
- return [output_mask] + state_mask
- return output_mask
-
- def step(self, inputs, states):
- raise NotImplementedError
-
- def get_constants(self, inputs, training=None):
- return []
-
- def get_initial_state(self, inputs):
- # build an all-zero tensor of shape (samples, output_dim)
- initial_state = array_ops.zeros_like(inputs)
- # shape of initial_state = (samples, timesteps, input_dim)
- initial_state = math_ops.reduce_sum(initial_state, axis=(1, 2))
- # shape of initial_state = (samples,)
- initial_state = array_ops.expand_dims(initial_state, axis=-1)
- # shape of initial_state = (samples, 1)
- initial_state = K.tile(initial_state, [1,
- self.units]) # (samples, output_dim)
- initial_state = [initial_state for _ in range(len(self.states))]
- return initial_state
-
- def preprocess_input(self, inputs, training=None):
- return inputs
-
- def __call__(self, inputs, initial_state=None, **kwargs):
- if (isinstance(inputs, (list, tuple)) and
- len(inputs) > 1
- and initial_state is None):
- initial_state = inputs[1:]
- inputs = inputs[0]
-
- # If `initial_state` is specified,
- # and if it a Keras tensor,
- # then add it to the inputs and temporarily
- # modify the input spec to include the state.
- if initial_state is None:
- return super(Recurrent, self).__call__(inputs, **kwargs)
-
- if not isinstance(initial_state, (list, tuple)):
- initial_state = [initial_state]
-
- is_keras_tensor = hasattr(initial_state[0], '_keras_history')
- for tensor in initial_state:
- if hasattr(tensor, '_keras_history') != is_keras_tensor:
- raise ValueError('The initial state of an RNN layer cannot be'
- ' specified with a mix of Keras tensors and'
- ' non-Keras tensors')
-
- if is_keras_tensor:
- # Compute the full input spec, including state
- input_spec = self.input_spec
- state_spec = self.state_spec
- if not isinstance(input_spec, list):
- input_spec = [input_spec]
- if not isinstance(state_spec, list):
- state_spec = [state_spec]
- self.input_spec = input_spec + state_spec
-
- # Compute the full inputs, including state
- inputs = [inputs] + list(initial_state)
-
- # Perform the call
- output = super(Recurrent, self).__call__(inputs, **kwargs)
-
- # Restore original input spec
- self.input_spec = input_spec
- return output
- else:
- kwargs['initial_state'] = initial_state
- return super(Recurrent, self).__call__(inputs, **kwargs)
-
- def call(self, inputs, mask=None, training=None, initial_state=None):
- # input shape: `(samples, time (padded with zeros), input_dim)`
- # note that the .build() method of subclasses MUST define
- # self.input_spec and self.state_spec with complete input shapes.
- if isinstance(inputs, list):
- initial_state = inputs[1:]
- inputs = inputs[0]
- elif initial_state is not None:
- pass
- elif self.stateful:
- initial_state = self.states
- else:
- initial_state = self.get_initial_state(inputs)
-
- if isinstance(mask, list):
- mask = mask[0]
-
- if len(initial_state) != len(self.states):
- raise ValueError('Layer has ' + str(len(self.states)) +
- ' states but was passed ' + str(len(initial_state)) +
- ' initial states.')
- input_shape = K.int_shape(inputs)
- if self.unroll and input_shape[1] is None:
- raise ValueError('Cannot unroll a RNN if the '
- 'time dimension is undefined. \n'
- '- If using a Sequential model, '
- 'specify the time dimension by passing '
- 'an `input_shape` or `batch_input_shape` '
- 'argument to your first layer. If your '
- 'first layer is an Embedding, you can '
- 'also use the `input_length` argument.\n'
- '- If using the functional API, specify '
- 'the time dimension by passing a `shape` '
- 'or `batch_shape` argument to your Input layer.')
- constants = self.get_constants(inputs, training=None)
- preprocessed_input = self.preprocess_input(inputs, training=None)
- last_output, outputs, states = K.rnn(
- self.step,
- preprocessed_input,
- initial_state,
- go_backwards=self.go_backwards,
- mask=mask,
- constants=constants,
- unroll=self.unroll)
- if self.stateful:
- updates = []
- for i in range(len(states)):
- updates.append(state_ops.assign(self.states[i], states[i]))
- self.add_update(updates, inputs)
-
- # Properly set learning phase
- if 0 < self.dropout + self.recurrent_dropout:
- last_output._uses_learning_phase = True
- outputs._uses_learning_phase = True
-
- if not self.return_sequences:
- outputs = last_output
-
- if self.return_state:
- if not isinstance(states, (list, tuple)):
- states = [states]
- else:
- states = list(states)
- return [outputs] + states
- return outputs
-
- def reset_states(self, states=None):
- if not self.stateful:
- raise AttributeError('Layer must be stateful.')
- batch_size = self.input_spec[0].shape[0]
- if not batch_size:
- raise ValueError('If a RNN is stateful, it needs to know '
- 'its batch size. Specify the batch size '
- 'of your input tensors: \n'
- '- If using a Sequential model, '
- 'specify the batch size by passing '
- 'a `batch_input_shape` '
- 'argument to your first layer.\n'
- '- If using the functional API, specify '
- 'the time dimension by passing a '
- '`batch_shape` argument to your Input layer.')
- # initialize state if None
- if self.states[0] is None:
- self.states = [K.zeros((batch_size, self.units)) for _ in self.states]
- elif states is None:
- for state in self.states:
- K.set_value(state, np.zeros((batch_size, self.units)))
- else:
- if not isinstance(states, (list, tuple)):
- states = [states]
- if len(states) != len(self.states):
- raise ValueError('Layer ' + self.name + ' expects ' +
- str(len(self.states)) + ' states, '
- 'but it received ' + str(len(states)) +
- ' state values. Input received: ' + str(states))
- for index, (value, state) in enumerate(zip(states, self.states)):
- if value.shape != (batch_size, self.units):
- raise ValueError('State ' + str(index) +
- ' is incompatible with layer ' + self.name +
- ': expected shape=' + str((batch_size, self.units)) +
- ', found shape=' + str(value.shape))
- K.set_value(state, value)
-
- def get_config(self):
- config = {
- 'return_sequences': self.return_sequences,
- 'return_state': self.return_state,
- 'go_backwards': self.go_backwards,
- 'stateful': self.stateful,
- 'unroll': self.unroll,
- 'implementation': self.implementation
- }
- base_config = super(Recurrent, self).get_config()
- return dict(list(base_config.items()) + list(config.items()))
-
-
def _standardize_args(inputs, initial_state, constants, num_constants):
"""Standardizes `__call__` to a single list of tensor inputs.