diff options
author | Nupur Garg <nupurgarg@google.com> | 2018-10-09 11:03:57 -0700 |
---|---|---|
committer | TensorFlower Gardener <gardener@tensorflow.org> | 2018-10-09 11:08:47 -0700 |
commit | 1e4a3baad388b5d5250efdb19f91d5b670816fbe (patch) | |
tree | 278f4cc3bd9e9f50bc26d288a6b2851a4ae9858b | |
parent | 3e8af7ea6b70104b05be22797451d0218c9e5262 (diff) |
Update TFLite Converter documentation.
PiperOrigin-RevId: 216386450
-rw-r--r-- | tensorflow/contrib/lite/toco/README.md | 9 | ||||
-rw-r--r-- | tensorflow/contrib/lite/toco/g3doc/cmdline_examples.md | 66 | ||||
-rw-r--r-- | tensorflow/contrib/lite/toco/g3doc/cmdline_reference.md | 8 | ||||
-rw-r--r-- | tensorflow/contrib/lite/toco/g3doc/python_api.md | 95 |
4 files changed, 93 insertions, 85 deletions
diff --git a/tensorflow/contrib/lite/toco/README.md b/tensorflow/contrib/lite/toco/README.md index 2db6a627ab..91f6f618a3 100644 --- a/tensorflow/contrib/lite/toco/README.md +++ b/tensorflow/contrib/lite/toco/README.md @@ -1,6 +1,6 @@ -# TOCO: TensorFlow Lite Optimizing Converter +# TensorFlow Lite Converter -The TensorFlow Lite Optimizing Converter converts TensorFlow graphs into +The TensorFlow Lite Converter converts TensorFlow graphs into TensorFlow Lite graphs. There are additional usages that are also detailed in the usage documentation. @@ -14,9 +14,10 @@ Usage information is given in these documents: ## Where the converter fits in the TensorFlow landscape -Once an application developer has a trained TensorFlow model, TOCO will accept +Once an application developer has a trained TensorFlow model, the TensorFlow +Lite Converter will accept that model and generate a TensorFlow Lite -[FlatBuffer](https://google.github.io/flatbuffers/) file. TOCO currently supports +[FlatBuffer](https://google.github.io/flatbuffers/) file. The converter currently supports [SavedModels](https://www.tensorflow.org/guide/saved_model#using_savedmodel_with_estimators), frozen graphs (models generated via [freeze_graph.py](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py)), diff --git a/tensorflow/contrib/lite/toco/g3doc/cmdline_examples.md b/tensorflow/contrib/lite/toco/g3doc/cmdline_examples.md index aba7536cbd..e3c46eb377 100644 --- a/tensorflow/contrib/lite/toco/g3doc/cmdline_examples.md +++ b/tensorflow/contrib/lite/toco/g3doc/cmdline_examples.md @@ -1,7 +1,7 @@ -# TensorFlow Lite Optimizing Converter command-line examples +# TensorFlow Lite Converter command-line examples -This page provides examples on how to use TOCO via command line. It is -complemented by the following documents: +This page shows how to use the TensorFlow Lite Converter in the command line. It +is complemented by the following documents: * [README](../README.md) * [Command-line glossary](cmdline_reference.md) @@ -10,7 +10,7 @@ complemented by the following documents: Table of contents: * [Command-line tools](#tools) - * [Converting models prior to TensorFlow 1.9.](#pre-tensorflow-1.9) + * [Converting models prior to TensorFlow 1.9](#pre-tensorflow-1.9) * [Basic examples](#basic) * [Convert a TensorFlow GraphDef](#graphdef) * [Convert a TensorFlow SavedModel](#savedmodel) @@ -31,27 +31,28 @@ Table of contents: ## Command-line tools <a name="tools"></a> -There are two approaches to running TOCO via command line. +There are two approaches to running the converter in the command line. * `tflite_convert`: Starting from TensorFlow 1.9, the command-line tool - `tflite_convert` will be installed as part of the Python package. All of the + `tflite_convert` is installed as part of the Python package. All of the examples below use `tflite_convert` for simplicity. * Example: `tflite_convert --output_file=...` -* `bazel`: In order to run the latest version of TOCO, [clone the TensorFlow - repository](https://www.tensorflow.org/install/source) - and use `bazel`. This is the recommended approach for converting models that - utilize new features that were not supported by TOCO in TensorFlow 1.9. +* `bazel`: In order to run the latest version of the TensorFlow Lite Converter + either install the nightly build using + [pip](https://www.tensorflow.org/install/pip) or + [clone the TensorFlow repository](https://www.tensorflow.org/install/source) + and use `bazel`. * Example: `bazel run //tensorflow/contrib/lite/python:tflite_convert -- --output_file=...` -### Converting models prior to TensorFlow 1.9. <a name="pre-tensorflow-1.9"></a> +### Converting models prior to TensorFlow 1.9 <a name="pre-tensorflow-1.9"></a> -The recommended approach for using TOCO prior to TensorFlow 1.9 is the [Python -API](python_api.md#pre-tensorflow-1.9). If a command line tool is desired, the -`toco` command line tool was available in TensorFlow 1.7. Enter `toco --help` in -Terminal for additional details on the command-line flags available. There were -no command line tools in TensorFlow 1.8. +The recommended approach for using the converter prior to TensorFlow 1.9 is the +[Python API](python_api.md#pre-tensorflow-1.9). If a command line tool is +desired, the `toco` command line tool was available in TensorFlow 1.7. Enter +`toco --help` in Terminal for additional details on the command-line flags +available. There were no command line tools in TensorFlow 1.8. ## Basic examples <a name="basic"></a> @@ -117,9 +118,9 @@ tflite_convert \ ### Convert a TensorFlow GraphDef for quantized inference <a name="graphdef-quant"></a> -TOCO is compatible with fixed point quantization models described -[here](https://www.tensorflow.org/performance/quantization). These are float -models with +The TensorFlow Lite Converter is compatible with fixed point quantization models +described [here](https://www.tensorflow.org/performance/quantization). These are +float models with [`FakeQuant*`](https://www.tensorflow.org/api_guides/python/array_ops#Fake_quantization) ops inserted at the boundaries of fused layers to record min-max range information. This generates a quantized inference workload that reproduces the @@ -141,12 +142,12 @@ tflite_convert \ ### Use \"dummy-quantization\" to try out quantized inference on a float graph <a name="dummy-quant"></a> -In order to evaluate the possible benefit of generating a quantized graph, TOCO -allows "dummy-quantization" on float graphs. The flags `--default_ranges_min` -and `--default_ranges_max` accept plausible values for the min-max ranges of the -values in all arrays that do not have min-max information. "Dummy-quantization" -will produce lower accuracy but will emulate the performance of a correctly -quantized model. +In order to evaluate the possible benefit of generating a quantized graph, the +converter allows "dummy-quantization" on float graphs. The flags +`--default_ranges_min` and `--default_ranges_max` accept plausible values for +the min-max ranges of the values in all arrays that do not have min-max +information. "Dummy-quantization" will produce lower accuracy but will emulate +the performance of a correctly quantized model. The example below contains a model using Relu6 activation functions. Therefore, a reasonable guess is that most activation ranges should be contained in [0, 6]. @@ -207,10 +208,10 @@ tflite_convert \ ### Specifying subgraphs Any array in the input file can be specified as an input or output array in -order to extract subgraphs out of an input graph file. TOCO discards the parts -of the graph outside of the specific subgraph. Use [graph -visualizations](#graph-visualizations) to identify the input and output arrays -that make up the desired subgraph. +order to extract subgraphs out of an input graph file. The TensorFlow Lite +Converter discards the parts of the graph outside of the specific subgraph. Use +[graph visualizations](#graph-visualizations) to identify the input and output +arrays that make up the desired subgraph. The follow command shows how to extract a single fused layer out of a TensorFlow GraphDef. @@ -247,9 +248,10 @@ function tends to get fused). ## Graph visualizations -TOCO can export a graph to the Graphviz Dot format for easy visualization via -either the `--output_format` flag or the `--dump_graphviz_dir` flag. The -subsections below outline the use cases for each. +The converter can export a graph to the Graphviz Dot format for easy +visualization using either the `--output_format` flag or the +`--dump_graphviz_dir` flag. The subsections below outline the use cases for +each. ### Using `--output_format=GRAPHVIZ_DOT` <a name="using-output-format-graphviz-dot"></a> diff --git a/tensorflow/contrib/lite/toco/g3doc/cmdline_reference.md b/tensorflow/contrib/lite/toco/g3doc/cmdline_reference.md index 00bc8d4ccb..31200fd657 100644 --- a/tensorflow/contrib/lite/toco/g3doc/cmdline_reference.md +++ b/tensorflow/contrib/lite/toco/g3doc/cmdline_reference.md @@ -1,8 +1,8 @@ -# TensorFlow Lite Optimizing Converter command-line glossary +# TensorFlow Lite Converter command-line glossary -This page is complete reference of command-line flags used by TOCO's command -line starting from TensorFlow 1.9 up until the most recent build of TensorFlow. -It is complemented by the following other documents: +This page is complete reference of command-line flags used by the TensorFlow +Lite Converter's command line starting from TensorFlow 1.9 up until the most +recent build of TensorFlow. It is complemented by the following other documents: * [README](../README.md) * [Command-line examples](cmdline_examples.md) diff --git a/tensorflow/contrib/lite/toco/g3doc/python_api.md b/tensorflow/contrib/lite/toco/g3doc/python_api.md index 8c31c3dca8..1f741360c6 100644 --- a/tensorflow/contrib/lite/toco/g3doc/python_api.md +++ b/tensorflow/contrib/lite/toco/g3doc/python_api.md @@ -1,7 +1,8 @@ -# TensorFlow Lite Optimizing Converter & Interpreter Python API reference +# TensorFlow Lite Converter & Interpreter Python API reference -This page provides examples on how to use TOCO and the TensorFlow Lite -interpreter via the Python API. It is complemented by the following documents: +This page provides examples on how to use the TensorFlow Lite Converter and the +TensorFlow Lite interpreter using the Python API. It is complemented by the +following documents: * [README](../README.md) * [Command-line examples](cmdline_examples.md) @@ -23,39 +24,35 @@ Table of contents: * [Using the interpreter from model data](#interpreter-data) * [Additional instructions](#additional-instructions) * [Build from source code](#latest-package) - * [Converting models prior to TensorFlow 1.9.](#pre-tensorflow-1.9) + * [Converting models in TensorFlow 1.9 to TensorFlow 1.11](#pre-tensorflow-1.11) + * [Converting models prior to TensorFlow 1.9](#pre-tensorflow-1.9) ## High-level overview -While the TensorFlow Lite Optimizing Converter can be used from the command -line, it is often convenient to use it as part of a Python model build and -training script. This is so that conversion can be part of your model -development pipeline. This allows you to know early and often that you are -designing a model that can be targeted to devices with mobile. +While the TensorFlow Lite Converter can be used from the command line, it is +often convenient to use in a Python script as part of the model development +pipeline. This allows you to know early that you are designing a model that can +be targeted to devices with mobile. ## API The API for converting TensorFlow models to TensorFlow Lite as of TensorFlow 1.9 -is `tf.contrib.lite.TocoConverter`. The API for calling the Python intepreter is -`tf.contrib.lite.Interpreter`. - -**NOTE**: As of TensorFlow 1.12, the API for converting TensorFlow models to -TFLite will be renamed to `TFLiteConverter`. `TFLiteConverter` is semantically -identically to `TocoConverter`. The API is available at -`tf.contrib.lite.TFLiteConverter` as of the Sept 26 `tf-nightly`. - -`TocoConverter` provides class methods based on the original format of the -model. `TocoConverter.from_session()` is available for GraphDefs. -`TocoConverter.from_saved_model()` is available for SavedModels. -`TocoConverter.from_keras_model_file()` is available for `tf.Keras` files. +is `tf.contrib.lite.TFLiteConverter`. The API for calling the Python intepreter +is `tf.contrib.lite.Interpreter`. + +Note: Reference "Additional Instructions" sections for converting TensorFlow +models to TensorFlow Lite +[in TensorFlow 1.9 to TensorFlow 1.11](#pre-tensorflow-1.11) and +[prior to TensorFlow 1.9](#pre-tensorflow-1.9) + +`TFLiteConverter` provides class methods based on the original format of the +model. `TFLiteConverter.from_session()` is available for GraphDefs. +`TFLiteConverter.from_saved_model()` is available for SavedModels. +`TFLiteConverter.from_keras_model_file()` is available for `tf.Keras` files. Example usages for simple float-point models are shown in [Basic Examples](#basic). Examples usages for more complex models is shown in [Complex Examples](#complex). -**NOTE**: Currently, `TocoConverter` will cause a fatal error to the Python -interpreter when the conversion fails. This will be remedied as soon as -possible. - ## Basic examples <a name="basic"></a> The following section shows examples of how to convert a basic float-point model @@ -76,7 +73,7 @@ out = tf.identity(val, name="out") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) - converter = tf.contrib.lite.TocoConverter.from_session(sess, [img], [out]) + converter = tf.contrib.lite.TFLiteConverter.from_session(sess, [img], [out]) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) ``` @@ -89,7 +86,7 @@ TensorFlow Lite FlatBuffer when the GraphDef is stored in a file. Both `.pb` and The example uses [Mobilenet_1.0_224](https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_1.0_224_frozen.tgz). -The function only supports GraphDefs frozen via +The function only supports GraphDefs frozen using [freeze_graph.py](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py). ```python @@ -99,7 +96,7 @@ graph_def_file = "/path/to/Downloads/mobilenet_v1_1.0_224/frozen_graph.pb" input_arrays = ["input"] output_arrays = ["MobilenetV1/Predictions/Softmax"] -converter = tf.contrib.lite.TocoConverter.from_frozen_graph( +converter = tf.contrib.lite.TFLiteConverter.from_frozen_graph( graph_def_file, input_arrays, output_arrays) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) @@ -113,25 +110,26 @@ FlatBuffer. ```python import tensorflow as tf -converter = tf.contrib.lite.TocoConverter.from_saved_model(saved_model_dir) +converter = tf.contrib.lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) ``` For more complex SavedModels, the optional parameters that can be passed into -`TocoConverter.from_saved_model()` are `input_arrays`, `input_shapes`, +`TFLiteConverter.from_saved_model()` are `input_arrays`, `input_shapes`, `output_arrays`, `tag_set` and `signature_key`. Details of each parameter are -available by running `help(tf.contrib.lite.TocoConverter)`. +available by running `help(tf.contrib.lite.TFLiteConverter)`. ### Exporting a tf.keras File <a name="basic-keras-file"></a> The following example shows how to convert a `tf.keras` model into a TensorFlow -Lite FlatBuffer. +Lite FlatBuffer. This example requires +[`h5py`](http://docs.h5py.org/en/latest/build.html) to be installed. ```python import tensorflow as tf -converter = tf.contrib.lite.TocoConverter.from_keras_model_file("keras_model.h5") +converter = tf.contrib.lite.TFLiteConverter.from_keras_model_file("keras_model.h5") tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) ``` @@ -163,7 +161,7 @@ keras_file = "keras_model.h5" tf.keras.models.save_model(model, keras_file) # Convert to TensorFlow Lite model. -converter = tf.contrib.lite.TocoConverter.from_keras_model_file(keras_file) +converter = tf.contrib.lite.TFLiteConverter.from_keras_model_file(keras_file) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) ``` @@ -173,7 +171,7 @@ open("converted_model.tflite", "wb").write(tflite_model) For models where the default value of the attributes is not sufficient, the attribute's values should be set before calling `convert()`. In order to call any constants use `tf.contrib.lite.constants.<CONSTANT_NAME>` as seen below with -`QUANTIZED_UINT8`. Run `help(tf.contrib.lite.TocoConverter)` in the Python +`QUANTIZED_UINT8`. Run `help(tf.contrib.lite.TFLiteConverter)` in the Python terminal for detailed documentation on the attributes. Although the examples are demonstrated on GraphDefs containing only constants. @@ -193,7 +191,7 @@ val = img + const out = tf.fake_quant_with_min_max_args(val, min=0., max=1., name="output") with tf.Session() as sess: - converter = tf.contrib.lite.TocoConverter.from_session(sess, [img], [out]) + converter = tf.contrib.lite.TFLiteConverter.from_session(sess, [img], [out]) converter.inference_type = tf.contrib.lite.constants.QUANTIZED_UINT8 input_arrays = converter.get_input_arrays() converter.quantized_input_stats = {input_arrays[0] : (0., 1.)} # mean, std_dev @@ -250,7 +248,7 @@ val = img + const out = tf.identity(val, name="out") with tf.Session() as sess: - converter = tf.contrib.lite.TocoConverter.from_session(sess, [img], [out]) + converter = tf.contrib.lite.TFLiteConverter.from_session(sess, [img], [out]) tflite_model = converter.convert() # Load TFLite model and allocate tensors. @@ -262,13 +260,20 @@ interpreter.allocate_tensors() ### Build from source code <a name="latest-package"></a> -In order to run the latest version of the TOCO Python API, clone the TensorFlow -repository, configure the installation, and build and install the pip package. -Detailed instructions are available -[here](https://www.tensorflow.org/install/source). +In order to run the latest version of the TensorFlow Lite Converter Python API, +either install the nightly build with +[pip](https://www.tensorflow.org/install/pip) (recommended) or +[Docker](https://www.tensorflow.org/install/docker), or +[build the pip package from source](https://www.tensorflow.org/install/source). + +### Converting models in TensorFlow 1.9 to TensorFlow 1.11 <a name="#pre-tensorflow-1.11"></a> + +To convert TensorFlow models to TensorFlow Lite in TensorFlow 1.9 through +TensorFlow 1.11, use `TocoConverter`. `TocoConverter` is semantically +identically to `TFLiteConverter`. -### Converting models prior to TensorFlow 1.9. <a name="pre-tensorflow-1.9"></a> +### Converting models prior to TensorFlow 1.9 <a name="pre-tensorflow-1.9"></a> -To use TOCO in TensorFlow 1.7 and TensorFlow 1.8, use the `toco_convert` -function. Run `help(tf.contrib.lite.toco_convert)` to get details about accepted -parameters. +To convert TensorFlow models to TensorFlow Lite in TensorFlow 1.7 and TensorFlow +1.8, use the `toco_convert` function. Run `help(tf.contrib.lite.toco_convert)` +to get details about accepted parameters. |