aboutsummaryrefslogtreecommitdiffhomepage
path: root/tools/skpdiff/SkPMetric.cpp
blob: ed807636b63da0694164c6d1e82e9bff93e9842f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#include <cmath>

#include "SkBitmap.h"
#include "skpdiff_util.h"
#include "SkPMetric.h"
#include "SkPMetricUtil_generated.h"

struct RGB {
    float r, g, b;
};

struct LAB {
    float l, a, b;
};

template<class T>
struct Image2D {
    int width;
    int height;
    T* image;

    Image2D(int w, int h)
        : width(w),
          height(h) {
        SkASSERT(w > 0);
        SkASSERT(h > 0);
        image = SkNEW_ARRAY(T, w * h);
    }

    ~Image2D() {
        SkDELETE_ARRAY(image);
    }

    void readPixel(int x, int y, T* pixel) const {
        SkASSERT(x >= 0);
        SkASSERT(y >= 0);
        SkASSERT(x < width);
        SkASSERT(y < height);
        *pixel = image[y * width + x];
    }

    T* getRow(int y) const {
        return &image[y * width];
    }

    void writePixel(int x, int y, const T& pixel) {
        SkASSERT(x >= 0);
        SkASSERT(y >= 0);
        SkASSERT(x < width);
        SkASSERT(y < height);
        image[y * width + x] = pixel;
    }
};

typedef Image2D<float> ImageL;
typedef Image2D<RGB> ImageRGB;
typedef Image2D<LAB> ImageLAB;

template<class T>
struct ImageArray
{
    int slices;
    Image2D<T>** image;

    ImageArray(int w, int h, int s)
        : slices(s) {
        SkASSERT(s > 0);
        image = SkNEW_ARRAY(Image2D<T>*, s);
        for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
            image[sliceIndex] = SkNEW_ARGS(Image2D<T>, (w, h));
        }
    }

    ~ImageArray() {
        for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
            SkDELETE(image[sliceIndex]);
        }
        SkDELETE_ARRAY(image);
    }

    Image2D<T>* getLayer(int z) const {
        SkASSERT(z >= 0);
        SkASSERT(z < slices);
        return image[z];
    }
};

typedef ImageArray<float> ImageL3D;


#define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc

static void adobergb_to_cielab(float r, float g, float b, LAB* lab) {
    // Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorImage Encoding"
    // URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
    // Section: 4.3.5.3
    // See Also: http://en.wikipedia.org/wiki/Adobe_rgb
    float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f);
    float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f);
    float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f);

    // The following is the white point in XYZ, so it's simply the row wise addition of the above
    // matrix.
    const float xw = 0.5767f + 0.185556f + 0.188212f;
    const float yw = 0.297361f + 0.627355f + 0.0752847f;
    const float zw = 0.0270328f + 0.0706879f + 0.991248f;

    // This is the XYZ color point relative to the white point
    float f[3] = { x / xw, y / yw, z / zw };

    // Conversion from XYZ to LAB taken from
    // http://en.wikipedia.org/wiki/CIELAB#Forward_transformation
    for (int i = 0; i < 3; i++) {
        if (f[i] >= 0.008856f) {
            f[i] = SkPMetricUtil::get_cube_root(f[i]);
        } else {
            f[i] = 7.787f * f[i] + 4.0f / 29.0f;
        }
    }
    lab->l = 116.0f * f[1] - 16.0f;
    lab->a = 500.0f * (f[0] - f[1]);
    lab->b = 200.0f * (f[1] - f[2]);
}

/// Converts a 8888 bitmap to LAB color space and puts it into the output
static bool bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) {
    SkBitmap bm8888;
    if (bitmap->colorType() != kPMColor_SkColorType) {
        if (!bitmap->copyTo(&bm8888, kPMColor_SkColorType)) {
            return false;
        }
        bitmap = &bm8888;
    }

    int width = bitmap->width();
    int height = bitmap->height();
    SkASSERT(outImageLAB->width == width);
    SkASSERT(outImageLAB->height == height);

    bitmap->lockPixels();
    RGB rgb;
    LAB lab;
    for (int y = 0; y < height; y++) {
        unsigned char* row = (unsigned char*)bitmap->getAddr(0, y);
        for (int x = 0; x < width; x++) {
            // Perform gamma correction which is assumed to be 2.2
            rgb.r = SkPMetricUtil::get_gamma(row[x * 4 + 2]);
            rgb.g = SkPMetricUtil::get_gamma(row[x * 4 + 1]);
            rgb.b = SkPMetricUtil::get_gamma(row[x * 4 + 0]);
            adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab);
            outImageLAB->writePixel(x, y, lab);
        }
    }
    bitmap->unlockPixels();
    return true;
}

// From Barten SPIE 1989
static float contrast_sensitivity(float cyclesPerDegree, float luminance) {
    float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f);
    float b = 0.3f * powf(1.0f + 100.0f / luminance, 0.15f);
    return a *
           cyclesPerDegree *
           expf(-b * cyclesPerDegree) *
           sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree));
}

#if 0
// We're keeping these around for reference and in case the lookup tables are no longer desired.
// They are no longer called by any code in this file.

// From Daly 1993
 static float visual_mask(float contrast) {
    float x = powf(392.498f * contrast, 0.7f);
    x = powf(0.0153f * x, 4.0f);
    return powf(1.0f + x, 0.25f);
}

// From Ward Larson Siggraph 1997
static float threshold_vs_intensity(float adaptationLuminance) {
    float logLum = log10f(adaptationLuminance);
    float x;
    if (logLum < -3.94f) {
        x = -2.86f;
    } else if (logLum < -1.44f) {
        x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f;
    } else if (logLum < -0.0184f) {
        x = logLum - 0.395f;
    } else if (logLum < 1.9f) {
        x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f;
    } else {
        x = logLum - 1.255f;
    }
    return powf(10.0f, x);
}

#endif

/// Simply takes the L channel from the input and puts it into the output
static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) {
    for (int y = 0; y < imageLAB->height; y++) {
        for (int x = 0; x < imageLAB->width; x++) {
            LAB lab;
            imageLAB->readPixel(x, y, &lab);
            outImageL->writePixel(x, y, lab.l);
        }
    }
}

/// Convolves an image with the given filter in one direction and saves it to the output image
static void convolve(const ImageL* imageL, bool vertical, ImageL* outImageL) {
    SkASSERT(imageL->width == outImageL->width);
    SkASSERT(imageL->height == outImageL->height);

    const float matrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f };
    const int matrixCount = sizeof(matrix) / sizeof(float);
    const int radius = matrixCount / 2;

    // Keep track of what rows are being operated on for quick access.
    float* rowPtrs[matrixCount]; // Because matrixCount is constant, this won't create a VLA
    for (int y = radius; y < matrixCount; y++) {
        rowPtrs[y] = imageL->getRow(y - radius);
    }
    float* writeRow = outImageL->getRow(0);

    for (int y = 0; y < imageL->height; y++) {
        for (int x = 0; x < imageL->width; x++) {
            float lSum = 0.0f;
            for (int xx = -radius; xx <= radius; xx++) {
                int nx = x;
                int ny = y;

                // We mirror at edges so that edge pixels that the filter weighting still makes
                // sense.
                if (vertical) {
                    ny += xx;
                    if (ny < 0) {
                        ny = -ny;
                    }
                    if (ny >= imageL->height) {
                        ny = imageL->height + (imageL->height - ny - 1);
                    }
                } else {
                    nx += xx;
                    if (nx < 0) {
                        nx = -nx;
                    }
                    if (nx >= imageL->width) {
                        nx = imageL->width + (imageL->width - nx - 1);
                    }
                }

                float weight = matrix[xx + radius];
                lSum += rowPtrs[ny - y + radius][nx] * weight;
            }
            writeRow[x] = lSum;
        }
        // As we move down, scroll the row pointers down with us
        for (int y = 0; y < matrixCount - 1; y++)
        {
            rowPtrs[y] = rowPtrs[y + 1];
        }
        rowPtrs[matrixCount - 1] += imageL->width;
        writeRow += imageL->width;
    }
}

static double pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB, int* poiCount) {
    SkASSERT(baselineLAB);
    SkASSERT(testLAB);
    SkASSERT(poiCount);

    int width = baselineLAB->width;
    int height = baselineLAB->height;
    int maxLevels = 0;

    // Calculates how many levels to make by how many times the image can be divided in two
    int smallerDimension = width < height ? width : height;
    for ( ; smallerDimension > 1; smallerDimension /= 2) {
        maxLevels++;
    }

    // We'll be creating new arrays with maxLevels - 2, and ImageL3D requires maxLevels > 0,
    // so just return failure if we're less than 3.
    if (maxLevels <= 2) {
        return 0.0;
    }

    const float fov = SK_ScalarPI / 180.0f * 45.0f;
    float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f);
    float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / SK_ScalarPI);

    ImageL3D baselineL(width, height, maxLevels);
    ImageL3D testL(width, height, maxLevels);
    ImageL scratchImageL(width, height);
    float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels);
    float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2);
    float* contrast = SkNEW_ARRAY(float, maxLevels - 2);

    lab_to_l(baselineLAB, baselineL.getLayer(0));
    lab_to_l(testLAB, testL.getLayer(0));

    // Compute cpd - Cycles per degree on the pyramid
    cyclesPerDegree[0] = 0.5f * pixelsPerDegree;
    for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
        cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f;
    }

    // Contrast sensitivity is based on image dimensions. Therefore it cannot be statically
    // generated.
    float* contrastSensitivityTable = SkNEW_ARRAY(float, maxLevels * 1000);
    for (int levelIndex = 0; levelIndex < maxLevels; levelIndex++) {
        for (int csLum = 0; csLum < 1000; csLum++) {
           contrastSensitivityTable[levelIndex * 1000 + csLum] =
           contrast_sensitivity(cyclesPerDegree[levelIndex], (float)csLum / 10.0f + 1e-5f);
       }
    }

    // Compute G - The convolved lum for the baseline
    for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
        convolve(baselineL.getLayer(levelIndex - 1), false, &scratchImageL);
        convolve(&scratchImageL, true, baselineL.getLayer(levelIndex));
    }
    for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
        convolve(testL.getLayer(levelIndex - 1), false, &scratchImageL);
        convolve(&scratchImageL, true, testL.getLayer(levelIndex));
    }

    // Compute F_freq - The elevation f
    for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
        float cpd = cyclesPerDegree[levelIndex];
        thresholdFactorFrequency[levelIndex] = contrastSensitivityMax /
                                               contrast_sensitivity(cpd, 100.0f);
    }

    // Calculate F
    for (int y = 0; y < height; y++) {
        for (int x = 0; x < width; x++) {
            float lBaseline;
            float lTest;
            baselineL.getLayer(0)->readPixel(x, y, &lBaseline);
            testL.getLayer(0)->readPixel(x, y, &lTest);

            float avgLBaseline;
            float avgLTest;
            baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline);
            testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest);

            float lAdapt = 0.5f * (avgLBaseline + avgLTest);
            if (lAdapt < 1e-5f) {
                lAdapt = 1e-5f;
            }

            float contrastSum = 0.0f;
            for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
                float baselineL0, baselineL1, baselineL2;
                float testL0, testL1, testL2;
                baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0);
                testL.    getLayer(levelIndex + 0)->readPixel(x, y, &testL0);
                baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1);
                testL.    getLayer(levelIndex + 1)->readPixel(x, y, &testL1);
                baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2);
                testL.    getLayer(levelIndex + 2)->readPixel(x, y, &testL2);

                float baselineContrast1 = fabsf(baselineL0 - baselineL1);
                float testContrast1     = fabsf(testL0 - testL1);
                float numerator = (baselineContrast1 > testContrast1) ?
                                   baselineContrast1 : testContrast1;

                float baselineContrast2 = fabsf(baselineL2);
                float testContrast2     = fabsf(testL2);
                float denominator = (baselineContrast2 > testContrast2) ?
                                    baselineContrast2 : testContrast2;

                // Avoid divides by close to zero
                if (denominator < 1e-5f) {
                    denominator = 1e-5f;
                }
                contrast[levelIndex] = numerator / denominator;
                contrastSum += contrast[levelIndex];
            }

            if (contrastSum < 1e-5f) {
                contrastSum = 1e-5f;
            }

            float F = 0.0f;
            for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
                float contrastSensitivity = contrastSensitivityTable[levelIndex * 1000 +
                                                                     (int)(lAdapt * 10.0)];
                float mask = SkPMetricUtil::get_visual_mask(contrast[levelIndex] *
                                                            contrastSensitivity);

                F += contrast[levelIndex] +
                     thresholdFactorFrequency[levelIndex] * mask / contrastSum;
            }

            if (F < 1.0f) {
                F = 1.0f;
            }

            if (F > 10.0f) {
                F = 10.0f;
            }


            bool isFailure = false;
            if (fabsf(lBaseline - lTest) > F * SkPMetricUtil::get_threshold_vs_intensity(lAdapt)) {
                isFailure = true;
            } else {
                LAB baselineColor;
                LAB testColor;
                baselineLAB->readPixel(x, y, &baselineColor);
                testLAB->readPixel(x, y, &testColor);
                float contrastA = baselineColor.a - testColor.a;
                float contrastB = baselineColor.b - testColor.b;
                float colorScale = 1.0f;
                if (lAdapt < 10.0f) {
                    colorScale = lAdapt / 10.0f;
                }
                colorScale *= colorScale;

                if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F)
                {
                    isFailure = true;
                }
            }

            if (isFailure) {
                (*poiCount)++;
            }
        }
    }

    SkDELETE_ARRAY(cyclesPerDegree);
    SkDELETE_ARRAY(contrast);
    SkDELETE_ARRAY(thresholdFactorFrequency);
    SkDELETE_ARRAY(contrastSensitivityTable);
    return 1.0 - (double)(*poiCount) / (width * height);
}

bool SkPMetric::diff(SkBitmap* baseline, SkBitmap* test, bool computeMask, Result* result) const {
    double startTime = get_seconds();

    // Ensure the images are comparable
    if (baseline->width() != test->width() || baseline->height() != test->height() ||
                    baseline->width() <= 0 || baseline->height() <= 0) {
        return false;
    }

    ImageLAB baselineLAB(baseline->width(), baseline->height());
    ImageLAB testLAB(baseline->width(), baseline->height());

    if (!bitmap_to_cielab(baseline, &baselineLAB) || !bitmap_to_cielab(test, &testLAB)) {
        return true;
    }

    result->poiCount = 0;
    result->result = pmetric(&baselineLAB, &testLAB, &result->poiCount);
    result->timeElapsed = get_seconds() - startTime;

    return true;
}